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THEORY OF STOCHASTIC GRAPHS APPLIED TO THE
'RANDOM SYNTHESIS AND DEGRADATION OF MULTIFUNCTIONAL
MACROMOLECULAR COMPOUNDS U

(*)'I“

’Claude;Marcel:Bruneau

"Science is built of facts as a house is built of -
stones, but an accumulation of facts 1s ‘no. more ‘ﬂi3gm
science than a pile.of rocks a house. C

-;h'(H P01ncare, Science and Hypothesis)r

INTRODUCTION

If the remarkable propeftiesiof'macromolecular substances are"‘fJ
Irelated to their large size, they depend no less. closely on the struc—‘fﬂ
~ture of their macromolecular lattices - Thus, one is, led to distinguish 5"
different classes of polymers according to the dimensionality of the

|

lattices. ' o e

While the synthesis of one—dimensional or linear polymefslthroughm
polymerization or polycondensation'of bifunctional'monomers leads to'i
(usable) products soluble in approprlate solvents, three- dimensional N
polymers obtained from monomers — of which. all or a part has - a func-
" tionality of more than two — are 1nfusible and insoluble in all o
solvents which do not degrade them..‘_" ’ e

' Thesis for doctorate in Physical Sclences, Paris, 1966, 0 oo
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5, lattice to arrive at a definition of 1ts three-dimensional nature,"f

. The generally sudden appearance of these properties is evidenced
by the massive coagulation of the " reaction medium and seems: to depend
Aonly on its composition.- the. phenomenon of gelification.

.j The interpretation and anticipation of this phenomenon have led
to numerous studies and the- ‘propounding of theories, the most elaboratef
of which are not aiways subject to easy experimental verification, o
while the simplest)ones necessarily involve disregarding certain very ,
obvious data, such as the existence of intramolecular reactions: in un;77“ .
" particular. | '

Thus, we have been led to propose a theoretical interpretationfal
of the behavior of multifunctional. macromolecular systems, chiefly , ‘
-from both a structural and stochastlc point of view based on elementary?_,;f
. data from the theory of graphs involving the axiomatic definition of t -
" the important concepts of intermolecular and intramolecular reactions{f
These notions, related to the number of molecules and the number of - S
cycles, respectlvely, enable us through a topological study of ‘the o

while the evolution of the 1attice may be interpreted in terms of a _
statistical study of the connections which may occur between the‘;]#_iﬁ{fff*

different molecular components. _ hw?
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. " FIRST PART
.'1'“ .
- EXPERIMENTAL DATA AND -PREVIOUS STUDIES S

1. Definitions. Experimental data.

If one were to give a genetic definition of three- dimen51onal
polymers, one would have to say that they are derived from the poly- L
merization of monomers,. part of which at least 1is multifunctional B

S i, e., has a functionality equal to ‘at least three. The term polymeri- |
‘zation should be taken here in its widest sense, and should 1nclude f‘
polycondensation or polyaddition 1n ‘the strict chemical ‘sense [l]

Such a definition enables us to distinguish three-dimenSional polymers
from the linear polymers derived from the polymerization of exclusivelyi

.‘bifunctional monomers. It shows immediately the importance of func-.

" tionality, a generalization of the old concept of valence, which’ 'f

should be regarded as the number of chemical combinations of a certain

(primary, for 1nstance) into which a ‘monomer may enter under adequate ’

~chemical reactlon conditions. ' Z'

From the experimental point bf"view the behavior in the course -
of synthesis (polymerization, polycondensation, etc.) and particularly
‘the rheological behavior of the two classes of polymers defined above
‘1s quite different. While the-vis0981ty of bifunctional systems,grows
rapidly as a function of the degree of advancement p of the‘reaction,¥¢f
leading to fusible polymers (thermoplastic) soluble in appropriate A'?' o
‘solvents, the viscosity of multifunctional systems, nearing a certain DS
value of the degree of advancement of the reaction known as- the critical‘*"
value, increases almost hyperbolically to become quickly, even sharply,
infinite at the same value (Figure 1) o e e;xauw

At experimental temperatures which may on occasion reach moreh
than 200° C, the medium assumes the ‘aspect of a mass which on: the';

macroscopic level lacks all flow properties and resembles a Jelly.,ﬁﬂ%
i o N
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Gelification is sald to occur.
The critical value of the reaction
degree of advancement is- therefore
often referred to as the point of

~.éélifi;ati;n U’”.{‘; gelification or gel point.
e p01nt o ~',"”1LJ“
°- e SR RN Classical theories.
o - Teaction rate 17 Applications. ‘

Figure 1. Rheological behavior o

of a multifunctional polymer ' . . : _ . v -

during synthesis. . ' hy' The detection of .such a
’ v ".phenomenon provides a clue to the

1mportance of the role. of function

R
H

v1scosity. i } e
T lgeld ied state O
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ality. From the theoretical point of view, Carother [2] was the ‘Pirst”

“to propose a simple relation permitting the calculation of the critical
,value of the degree of advancement of the reaction. He states that R
gelifioation occurs when — no other 1ntermolecular connection being ‘
-possible — the macromolecular compound is made up of a giant moleculel
The gelification point is then found from the general Formula (l) for
.an infinitely 1arge degree of polymerization..”_;' R R R

In these relations, f is the average functionality of the system -
~if it contains monomers of different functionalities. Thus, for a’ ' |
.system made up of"two moles of glycerol and three moles of phthalic.
fanhydride with an!average functionality of £ =2.4, Relation (2) yields
a theoretical value of c—O"”; on the order of the experimental values
‘determined for various diacids [3 5, 6, 71 and especially 0 796 in *1
the present ‘case [M] _ o | : S

Later, Flory:[B 12],'on the basis of statisticalICOnsiderations;ﬁ

'value Pe “the distribution of average molecular masses and the arrange-
‘ment of soluble, gelified fractions for a certain number of macromole—

cular systems.
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The theory is-based chiefly:onfthe-following two hypothesgs;;;;;¢

1. All functional groupings are equally reactive. , il
2.A_Any intramolecular reaction leading to cyclical structures

is assumed not: to-occur. ;f

, These two hypotheses'are corroborated by a number of experimentalﬁ
observations. Thus, Flory [13, 14, 15] showed for linear polymerslii &
that the reactiv1ty of functional groupings did not depend on their
size, at least 1f the first stage of the reaction was disregarded
and likewise the final stage as was shown later [16]. Moreover,
" Kienle [4-6] and Bradley [17, 18] showed for certain'multifunctional,g
polymers that, in the stages preceding gelification, the formation of?
intramolecular bonds was negligible. ‘ S

The important parameter in Flory s theory is the "branching 't v
coeff101ent" o defined as the probability of a reactive group belong-f
ing to a multifunctional unit leading, by means of a chain of bifunc y
.fional units, to another- multifunctional unit. The physico chemical
criterion for the occurrence of. gelification is still the ex1stence
-of infinitely. 1arge molecules whose dimensions would be, one ‘way or1
another, on the order of those of the reaction recipient. . The almos
certain existence of such a lattice, therefore, determines thefjﬂ” '

critical value of a:

ke '_.<3>~_;1--.,. AR
an expression in which f is no longer the average: functionality, but*
the functionality of the branching units. . .
. In the case of polycondensation which includes, for instance, -
pifunctional. and trifunctional units of type- A ‘and bifunctional B
units liable to. interact “the. computation of . a as a function of p

1 .
. T

"1eads to the expression. f.
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where r ratio of number of functional groupings of type A to
. number of functional groupings of type B. ‘

fp-:'proportion of A groupings belonging to branching units.'”“‘

pA': probability of an A grouping having reacted.

For the preceding stoichiometric phthalic anhydride- glycerol
system the functionality is f = 3 ‘"The relations above lead to a
theoretical critical value of Pe . 0..707. For the adipic a01d— o
pentaerythritol system, also stoichiometric, whose critical value ”ff
determined experimentally is approximately 0.63 [19] to 0.65 [2l],f;fﬂ
~calculations yield a slightly lowerfcritical value of p, =.01577,‘
For more complex systems, such as mixtures of diacids,- triacids, and“.-
dialcohols in variable proportions, the calculated values are still ‘?~f
lower than the experimental values [8], while under the same conditionsQa
one can easily show that the values calculated from Carother s"~- :

Relation (2) would be greater

According to Flory, the discrepancy arises from the fact that thep*
theory does not take into account, according -to the second hypothesng
the possible intramolecular reactions It was thought that this point?
of view could be corroborated by carrying out polycondensation in such
a way as to eliminate 1ntramolecular reactions. For that purpose,:f
Stockmayer and Weill [20] measured the gelification points of. the uﬁ
adipic acid- pentaerythritol system in solution in an inert solvent
‘first at low concentrations where the formation of cycles would be'rt
significant, and then at increasing concentrations, and finally, ' )
yextrapolated from the preceding results at "infinite" concentrations"
(zero volume) where. any poss1bility of forming. intramolecular bonds
would be eliminated. Under these conditions, obtaining a. value of

[}

Pc'=.o;5781¢,0.005

corroborated by similar experiments in different systems [22] appears
to constitute a certain confirmation of the theory. s

This theory also enables us to: find the distribution of average
molecular quantities, but. only in the case of systems including



trifunotional units or tetrafunctional systems with a 1engthwise- .

distribution of uniform chains. Thus, 1t was generalized for systems
including multifunctional units and ‘lengthwise" distributions of any- 3
C kind of chain by Stockmayer [23, 2“] The criterion for the occurrenceil *,
of gelification is confirmed but the complexity of the expressions SRR
‘yleldlng the average molecular masses makes their practical use very

awkward.

A The problem of the formation of cyclical structures, on which
the legitimacy of the precedlng theories depends to a: considerable
degree, has given rise to numerous. studies dealing with both the
possibility of cyclization of linear polymers such as decamethylene-‘_
+diol polyadipate [25] or - multlfunctional polymers from both a ‘
~ theoretical [26, 27] and experimental [28, 29, 30] point of v1ew.v'
The study of polyesters and polyalkoxysilanes in solutions-showed | R
- that an increase in the value of ‘the gelification point W1th a reduc-é
tion in average functionality and 1ncreased dilution could even lead
. to the suppression of the gelification phenomenon. Polymers with
.rigid molecular chains, however, appear to depend 1ess on the effects
of dilution [29]. . 3 o }:”‘ Lo
: Initially established by taking the polycondensation~process'asi}
'a model, the original theories were quickly extended to the process
" of vinyl type. polymerization by Stockmayer [24]. He shows, w1th the jg
special example of vinyl- div1nyl copolymers, that 1t is pos51ble under ;fﬁ
certain conditions to interpret the general behavior of these systems ‘
[33] by assuming that the polymerization reactions in linear chains
‘and brldging are not concomitant [31 32] but consecutive.'~

However, experimentation shows that the interpretation of the
| polymerization process by the classical theory may well lead to

. serious miscalculations.  Thus, Walling [34], in making a study of
the gelification of glycol methyl -dimethacrylate methacrylate ‘or
;vinyl vinyl- diadipate acetate in solution was able to observe gelifi—
cation points quite different from the calculated ones. " Only" systems
including bifunctional units in proportions of less than O 2% could
be regarded as giving experimental values in reasonable agreement

L]
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number of points st111 remain unexplalned. Particularly, it is poorly

: :monomer level was also examined [52], as well as the effects of mono—

';with the theory. It appears that the cause of this discrepancy must
be sought in the special nature of the polymerization mechanism in-ﬁ
'1volving propagation rates much greater than diffusion rates [34], andﬁ
.probably also in the effects of ‘dilution [30] Comparable difficulties
‘were likewise encountered in the interpretation of the behavior of
clalyl polyphthalates, abundantly studied by Simpson [35- 38] Never—
" theless, Gordon [L40, 41] refutes the effects of diffusion on the:“‘
- delay occasioned by gelification, and invokes instead either the-nA i
°5_presence of a chain transfer reaction [40] or the formation of cycles’
involving the tendency of acrylic or allylic groupings with a 11ke i
motif to be incorporated into the llnear chain [36, 39, 40] or else~;
‘the formation of multiple bridgings [38]. Nevertheless, Gordon [H2]
‘showed that, to the extent that 1ntra chain secondary polymerization
reactions are known, the ‘classical theory may be used, since the
chain transfer reactions and multiple bridgings have only a negligible
“'effect on the general development of the process.
In spite of the existence ofilater works [43, 44], a certain R

understood why the three dialylic phthalates have similar’ gelificatio
- points, while the’ortho ~-isomer exhibits a decided tendency toward o
'~ intra-chain polymerization [4s]. ‘ |

All of these difficulties appear enough to Justlfy the trend :
'toward theoretical and experimental studies aimed at perfecting the'«
‘ classical theory to be oriented toward the study of polycondensablevf

systems instead. Thus,vthe princ1pa1 modifications of the, theory,
: whose purpose it was to reduce the fundamental hypotheses, dealt w1th

such systems. : - _ Lf”

Thus, the behavior of systems w1th a certain category of s1milar
functional groupings, but with different reactivities, was" examined
from a general p01nt of v1ew [46,: 50] or for the purpose of making
‘statistical models of macromolecules of natural origin [51] The ﬁ.f
.'distribution of functional groupings according’ to their nature at the

-functional monomers ultimately endowed with their own . reactivity [53]



. ,which not only gelification, but also reticulation and vulcanization

In.a general’ way, the gelification theory was applied to a number
».of multifunctional polycondensable or polymerizable systems in. order .
. to justify — or to anticipate _ the three-dimensional structure to

e

"are related. In this regard, we shall mention the elastomers 54, 55], ”?ff
- certain types of polyamides - [56 57], phenol, polymerizable resin oils
:[58] thermally polymerizable olls: [59, 60, 61], polyepoxide compounds

[62, 63] and the formophenol system which provided the occasion for a'
fnew theoretical discussion [6&] ' ‘ ’

It was extended to the study of the behavior of multifunctional
‘macromolecular systems of" ‘mineral [65, 66] and natural (671 origin, )
‘particularly to the interpretation -of certain transitory combinations
of living substances such as the antigen-antibody system [68 72]

\ .

Y
B

3. Modern theories,A

A statistical study of multifunctional polymers was taken up. ‘
recently by Gordon [73]. It was based on new mathematical. bases from
‘the studies of Good [T4, 75] carried out in the more general frameworkf
of the "theory of’ processes in a series" [76] ' L

One of the most attractive aspects of Gordon's developments istleﬁfm'
‘that the use of generating functions permits us to calculate the

different average molecular masses from the gelification point and therivb
‘soluble fraction much more directly than by the use of the calculus of:f,c"
probabilities. It also enables us; in the special case of'the adipic.gyt”
acid-glycerol case, to take into consideration the partial or completef_

 elimination of the water produced by polycondensation as well as the;@TW
~effects of the different esterification_rates of the primary‘and

secondary hydroxyls; The preceding factors were generalized”to-coverf‘
" non-random" polycondensation, i:ef, to the case where the”formationi
of chemical bonds is affected by the already existing bonds in the |
molecules. It is valid to assume that its influence is linear, with
~good approximation _— in other words, the free energy: of bond formationr
'.lS proportional to the number of bonds already- established and born
'_only by the first contracting patterns. Thus, we speak of a'

i L
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 "first-shell substitution effect". " On this effect will depend the
" respective rates of formation and breaking of bonds,. 1.e. E the equili”'
brium constant of the polycondensation reaction. Thus, the author
computes for the two extreme cases, using the generating function of
‘bond distribution, the average molecular masses, the gelification '
.point, and the soluble fraction [77] ' s

This theory was applied to the. statistical description of thev'f*
' chain -conformations of highly ramified polymers [787, to the calcu—dﬁr';
‘lation of the statistical parameters of the theory of rubber elasticity;
“[79], and quite recently to the process of competitive formation of L
‘linear and cyclical structures in. polymerization [80] - v

Still more recently, ‘Whittle [81] examines the question . from a
primarily mathematical point of view as a general process of an |
aggregation of entities bearing "sites" between which bonds can be
',established - At first, he. considers systems made of a single variety
- of units, all of whose sites are equally reactive He gives a com—'
"plete description of the aggregation process through the use of a "
generating function of the. distribution of different types of aggre-
- gates. Later, he extends the preceding results to the case of.. ‘
systems made up of different units contailning- nonequireactive sites
- Acknowledging that the bonding energy of a unit depends only on' the o
| number and nature of the units to which it is connected the genera—:
‘ting function (established from considerations of combinatory
analysis) may be advantageously replaced by a system of partial differ-
‘ential, nonlinear, first order equations established as a function o'”
the equilibrium conditions Then, by removing the interdiction of.
-'producing cyclical structures, we finish with a simplification, since
the preceding differential equation becomes linear [82] G

. However attractive it may be as a result of its wide generality,,
~it is unfortunately difficult to state that this 1ast theory can, 1n
the immediate future, be of any practical use. : A

1
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pcq;. Preliminary considerationsg
The development of classical theories is characterized by a-
'tendency toward generalization aimed at the progressive suppression
. of the multiple aspects of the two basic simplifying hypotheses and
consequently, by the construction of mathematical models ever closer.f:
to real models. If, in this regard, the hypothe31s of equiprobability ,
of producing bonds between sites (equireactivity of chemical functionst
is no longer 1ndicated because of the difficulty of theoretical treat-:
.ment. On the other hand, the hypothe31s which assumes the ‘absence of
lattice cyclization has long been retained. Moreover,vin_its'modern i;
‘form, it is implicitly contained.ingthe concept of processes in a "";
series whose corresponding'type-diagram (graph) belongs to the*family-*
of topological trees (Figure 2). - Only recently, as we have Just seen,
have certain authors been able to; conceive of the possible existence :
“of cycles by suitable modifications of the description of a’ process :Nﬁ

Cin- series.

If it were not questionable that the structure conditions allwd
the properties of multifunctional macromolecular compounds, the |
specilal structure derived from the pos51bi11ty of cycllzation would
likewise have to contribute to the" interpretation of these properties,iﬂ
one of the principal phenomenological aspects of which is gelification.
This contribution would have to permit us to make up the dlfferential
observed between the gel points calculated from classical. theories b”‘
and those found experimentally by massive polycondensation of multi-uﬁ

functional macromolecular systems.

In the following presentation,"we concede, for the purpose of . |
-simplification, as a starting hypothesis (subject to later.revision,f’
as seen later) the equiprobability‘of producing the chemical bonds E
which are possible between reactive.sites both in time and spaCe,f Qn?i
'the other hand, we shall not. formulate a priori any hypothesis: R
~ assuming the exclusion of .any. possibility of cycle formation., We shall
- make this notion more speclfic as’ the discussion proceeds by referringli
'_both to experimental considerations in. the framework of chemical data“



" theory of graphs. .

PP

’and theoretical considerations in the framework of the axiomatic*'w

The description of the evolution of infinite random graphs has
'already been taken up from an essentially mathematical standpoint by i_
Erdos and Renyil [83] " Their application to a number of real processes7i
pertaining to the fields of physics, chemistry, biology, industry,.ﬁf
~and telecommunications led Hammersly (847 to distinguish, on the one
hand, processes of diffusion and on the other hand, processes of
- -percolation, of which the telecommunication, contamination,'and parti—.

- cularly the multifunctional polymer gelification are special cases.: 'ﬂ

As a physical chemist, I propose to discuss the latter case for'”:
finite multifunctional macromolecular systems. Such systems,! made up-17
of a finite and known nuniber of elements, will exhibit' a known, finite‘
maximum number of bonds which are chemically achievable by the con-~',
‘ .summation of suitable pairs of suitable sites. The state of a system
- can then be described in terms of a quanitity p (rate of reaction
badvancement) which, in thefdireCtion of evolution corresponding toTAQ
 synthesis (polymerization), will bebequal to the ratio of'theﬂnumberx
of actual bonds to the number of possible bonds. This ratio, a date
_in the evolution of the system, varies discretely between two extreme.
values, zero and one, corresponding to two s1milarly extreme states ;@
'o‘a state I characterized by the lack of bonds (set of disjointed 'ﬁ,
monomers) and a state S characterized by the presence of a number’of;&fif*"
bonds equal to the maximum- number of possible bonds.' In the form fq:“
d = 1 - p, it is the rate of development of the system in the inverse
‘sense from the preceding (rate of degradation) o
‘ To conceive of the most complete description possible, both from
:the topological and statistical standpoints, ‘we shall assume that thet
- development takes! place in both directions according to a: success1on
of semisteady equilibrium states.‘fm: I __',.A;f.y_ X

‘ If, in view of certain hypotheses and constraints of experimental
‘;origin, we assume that the phenomenon observed as a function of p

,!-l
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' . .

corresponds to- the most: probable occurrence of the rahd‘om"l 'p'roce'ss,‘»‘h
we can speak of the stochastic description of amphidromous systems

[851 ]




SECOND PART - = ool

t' . TOPOLOGICAL DESCRIPTION

Here we propose to examine the lattice structure of a multifunc-f‘“
tional macromolecular system developing an an . random fashion. }At.'
any moment in its development, we are interested solely in the proper-_
“ties which remain invariable in the course of the possible structurali”
transformations, that is,,only,the tppological properties. At first
we shall consider an ideal lattice characterized by an almost total :_
lack of constraints, particularly those of spatial origin, and, conse—
quently, all of the steric conformations which are equally possible.,ﬂ
;Next, progressively, to conclude with a theoretical model of real bt
”systems, we shall introduce into the ideal lattice a certain number
-of constraints derived from experimental considerations.;.VA¢ L

l.‘.Schematic representation.,

Schematic representation of a macromolecular 1attice,‘and o
'espeCially of a lattice in. a’ gelified state, must refer to two differ—
ent models, one of. Wthh may be termed the theoretical’ model and the

other, the chemical model. - .

1.1. Theoretical model. It was first proposed by Flory [8]
'We have represented the multifunctional units (f = 3) by points »*'
'(Figure 2a). The straight lines represent the molecule portions of :
a certaln length made up of bifunctional units ("chains") and includedﬁ
‘either between two "branching units",or between a branching unit and"

a bifunctional unit, one of whose extremifies has not reacted.ﬂ Thef
extremities of the "chains" are, situated successively on’ concentric'
circles centered on the middle of an original "chain" selected arbi-
nvtrarily : Every "chain" extremity, made up of one branching unit
produced two — more generally (f‘--l)-—— new "chains" whose '

+
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- Figure 2. Schematic representation
of a topological tree.

cular model [8].

" (b) Model derived from'(a).w.<f“:3.h
~ (c) Model derived from (b). j*ihg'j}ﬁjgarded as simple generations _
‘ " which do not play a part in the'f
x:continuity of the. process, exceptl
. to give the "chains" variable =

".’lengths without any structural

‘.effects.

Process in a series or .~
"family tree" type.AT:“”

The schematic representation of macromolecules with a tree strucs
ture can consist of a set of points arranged at random, representing
the multifunctional units, and curved lines indicating the possible
vvconformations of the chains (Figure 3a 3b) : s

H
P T
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“’extremities in turn have the:

:'2b) with their center at a
;;?branching unit arbitrarily selec-?

hé'ted as the origin and numbered -

ﬁ‘l, 2, 3 etc., form'the;geometriQ
", .cal locus of thevpossible pointsf
”Jjof departure of multiple'genera?dy
:ﬂ;tions succeeding each. other away
”?Vfrom the origin.. .
" 'tion of the concentric circles .
;ﬁ'into parallel lines leads to the
fticustomary schematic represen-, o
,a“tation (Figure 2c) of a. process
2fin a series [73], an important
fexample of which 1s a family. tree.
*i{This representation answers ‘the -
/. the definition of a topological
ftree'

... tree there exists one and only
. ‘one chain. |

i.ﬂtbifunctional units not repre-

(a) Flory s theoretical macromole—V? sented here and not liable to o

.multiple descendance must be re-fuf"*‘

‘same capability. Circles (Figurei

The tr"ansforma‘-'-“f£

between two points of - a

BN

It should be noted that the



o -w:Figure 4. Schematic represen—*\“ R
: LW tations of two possible: structure};gf
"Figure 3. Schematic represen-. | ' types for a multifunctional :
tations of two possible confor—,ﬂ»: macromolecule without  tree. ,
mations of a multifunctional | °. structure (chemical model).: '~
macromolecule with "tree" S e S PR
structure. : ' t“

. 1.2. Chemical model. This'is‘the model generally adopted by .
writers dealing with the structure of multifunctional macromolecular:f

compounds from a more spe01fically practical standpoint. It shows

- two views of different complexity (Figure ha, 4b). In contrast”to ;T'
‘the previous model, it is characterized by the fact that between two
"points of-the lattice there may be more than one chain going from one
~to the other. Nevertheless, in view of this possiblllty, two types'ﬁ
of structure nay appear: ‘either 1t 1ls possible, by elastic deforma-Ef
- tion of the lattice, to give a representation in a plane. without the
‘two chains intersecting, except for thelr multifunctional extremitlesa
:(a), or else such a representation is not possible (b). v SN

. To the extent that the synthesis of the lattice oceurs from'“m
monomers 1mmersed at random 1n a- three-dimensional space, a structure
'~of type (a) can be obtained only if the random generation conditions
of the lattilce include certain supplementary constraints., These }f'u”
fconstraints require that a subset of monomers and their bonds ‘be - e
'located on a surface homeomorphic with a plane which thus constitutes

16



. & sheet molecule'(lamellar)' If macromolecules of this type exist 1n
~nature, it does not appear that synthesis would have succeeded in‘
“ibringing 1nto play the. constraints necessary to obtain them(l) Thus
iv_in the absence of special constraints and in view of our hypothe51s P
l(Wthh is most probable in’ the general case) of spatial equireactivityg
 we are led to consider structure (b) as’ most typical of. the gelified
state o ¥ . _ : S * o ‘

h‘:2,» Elements of the theoryrof'graphs.

A comparative study of the typical values of the preceding graph
.on a rational basis 1is possible if we note that they belong strictly
-to graphs according to the. definition first given by D Konig [86]

) The theory of graphs was applied very early to organic chemistry
by G. Polya [87] and then by T. L. Hill [88]1, but appears to have bee
taken up again only much later [89] Quite recently, Van Wazer and
his colleagues make use of it in the -study of !random ,exchange

. reactions for radicals in mineral and organic macromolecular -3~ﬁ§
~ compounds [90] e '

From a chemical standpoint, a- polymer must be regarded as. a set
 of monomers endowed with chemical reactivity, among which chemical

’reaction R creates a correspondence which is manifested as the occur-»m
‘rence of bonds whose number depends on the rate of advancement of the'x

.»]

. reaction. For a given rate of advancement, a polymer is thus comparable
" to a set M of monomers and. a set A -of bonds involving a. set of pairs
of M. The chemical reaction R produces a partition of the set of -
monomer molecules. " The latter is: formed of d13301nted sets of monomers
‘connected to one another, which comprise the molecules of the polymer'

From an axiomatic point of view [91]_ we shall say. that the o
chemical reaction is a mapping of M on M ‘ However, starting with

I . e o T . o




: — a set M, : N
— a mapping ‘R of M on M ‘ g””

' we have a graph G (M R) made up of the set M and mapping R."Théfff
mapping R will be’manifested on the graph by a set A of continuous
lines joining pairs of points (mi, m ) such that "'C\I"ut“

‘ 12 elements of M, represent the monomers,;
The set of continuous lines completely determines the mapping of the

" graph just as mapping R determines set A. Therefore, we can write :
‘the graph either in the form G = (M,.B) or G = (M, A). '

The pOints or vertices m

A bond, once established between two monomers by means of theV;ffﬂ
reactive sites which they bear, makes these two sites. correspond on -
‘a one-to-one basis. If two sites are always connected by . two lines
in opposite directions, the graph- is symmetrical., For simplicity, we
can connect the two vertices by a continuous line with no. direction“
indicated, designated as. a "cross-link" '

2. l " Terminology. The terminology of graph theory, created by

'.mathemat1c1ans [91], is quite closely related to that used . customarilyvu
in macromolecular chemistry " Thus, ‘we - propose to adopt the- terminologyﬁ
of graph theory, both for generalization and for precision, to be
'~ supplemented where necessary- by terms of chemical origin to the extenti‘ |
that these terms will fill a void in current mathematical_language fgff.q,i“
~ the physical chemist. 4 R " ' RN

1. Thus, the degree of a vertex m, is the number of cross 1inks
'~ with one extremity at My and . the other different from m, . ' a

We shall generallze this definition and use the functionality"
f of a vertex my for the number of sites 1t contains, each vertex

‘being given in advance as the collection of a certain. number f of -
- sites. The extremities of every: cross-link occupy two sites (ulti'
mately belonging tio the same vertex) and one site capable of ,

1o
Lo

‘ receiving only one cross link %f;g-_-

S8



Functionality is the maximum degree a vertex may have.y It is”
generally determined 1n. advance., For a monomer, it is the number of
" functional groupings it possesses which can react under physico- aE

,-|'<|

' chemical reaction conditions.

" Node refers to any vertex. having a degree equal to or greater' _
*'than three, and antinode refers ‘to’ any other vertex. We shall use. a_f :
rather different definition, us1ng node for any vertex with a function—__:ﬂ

ality equal to or greater than three, and antinode for any vertex. with
a functionality equal to two. It follows that, in view of the evolv-'
.ing character of the graphs envisaged -any node or antinode with a }1
degree lower than its functionality may be regarded as a pre- node or

" a pre-antinode, respectively, because of 1its capability of becoming an

node or an antinode 1in a graph in the sense of graph theory [91]

2. A chain'is a sequence of cross-links, each cross 1iﬁk“ﬁ};,
~attached to the preceding cross-link by one extremity and the L
7succeeding cross=1ink by the other extremity., '

A linear chain will refer to a chain for which all vertices are
antinodes, and a ramified chain will refer to a- chain, part or all

'.of which is made up of nodes. o 1}'.3

A branch will indicate a linear chain for which only the . -
extremities belong to nodes.' o .

3. A vertex is called’terminal when it has only one 1nc1dent
- eross- link. We shall say that a cross -link or a linear chain or a

branch is terminal when it ends- in a terminal antinode.

By extension, a cross—link or a linear chain whose two extremities
are antinodes will be called floating to
An isolated vertex isconefW1th no incident cross-link. -
E 4, A cycle is a: finite chain beginning from one vertex and
_ finishing at thensame vertex.” It is called'elementary if all the

vertices are1difﬂerent, H“n,fgxpjfl.



The length of a chain is the number of cross-links in the o N
sequence. A cycle of unit length, made up of a single vertex and a
: single cross-link, 1is a‘”o op. ,"-‘ S T

5. A graph iS'connected if for every distinct pair of vertices,
ithere is a chain going from one - to the other. ' SRR

A ‘subgraph’ 'of G' (M, R) 1s by definition a graph with the
-formula G = (N, Ry ) such’ that Co o L

Ne N and! R,m;=Ro; AN, Vm,

A subgraph (M, A ) will be made up of a set of vertices f‘?)f;“;_~: S

‘and a set of cross links of A Joining two vertices of N.

.such that: «-‘

: Ry c.)l.l\‘:!n..,'-‘ Vm. B

A partial graph (M A ). will be made up of all vertices M vand all L

cross-links of a set A c \

'
]

A connected component (or component) of a graph is a connected .Q'“*”
.. subgraph of the graph. It follows that - KR

— the different’ connected components of a graph G = (M A) R
'constitute a partition of M. There is a close correlation between the N

- a graph is connected if

,'component




qo
A multigraph G = (M A) is a graph for which there "'z by several‘
:distinct cross-links Joining the same pair of vertices. T

A graph or a multigraph G is planar if it is possible to" repre-” f
sent it on a plane in such a way that the vertices are distinct points;f
and two branches meet nowhere but at their extremities The represen—;
tation of G in a plane, in conformity with the conditions required is
called a topOIOgical‘planar graph.. Two topological planar. graphs’ f-
which can be made to coincide. by elastic deformation of the plane are T

regarded as identical.

Generally, any graph G can be represented in three-dimenSional
space with no two branches intersecting Such a representation is :
called a'topOIOgical'graph If S deSignates a surface of three—p_;ufﬁ
~dimensional space, and if there is biunique and bicontinuous mapping
-0 of G on S, we know that two cross- links of oG will not intersect.:vv
'0G by definition is an S- -topological graph. If S is a plane, we Iﬁi*ﬁ
again encounter the concept of a- topological planar graph

It follows from the general theorems [92] that any finite graph\;
can be represented on an orientable surface S of type g (homeomorphic
with a surface delimiting a volume pierced by g holes), where g is '
sufficiently 1arge If g is zero (case of a sphere) we return to a
topological planar graph for a finite graph G. :

The representation of -a topological graph S by progection on a
plane will cause the cross-links to intersect. These must not’ be f
confused with the nodes, which should be denoted- in an appropriate

¢

manner (Figure 4b).

In the field of elastic deformation corresponding'to4theﬂStatesi”
of maximum coiling and complete extension of macromolecular‘Chainspji'
the different conformations of a polymer will constitute a topological

o «

2.2, BaSic‘theorems.f Let us consider a multigraph G with m

"vertices, a cross-links, and c. connected components. Let us set‘

’ 121 l.



whence' B e

By definition, v is the cyclomatic number of multigraph G.; It is the
‘_Betti number for the dimension of the variety considered, i e., for;;

" p is called the cocyclomatic number.

Formula (5) is a speCial ‘form of the Euler-Poincare relation [93]'ff
for a graph which is not necessarily connected. ' B

" Theorem I. Let G be a multigraph and G' a multigraph w1th (a + l);
cross~links obtained from the preceding ones by Joining two sites si#~.'
and 85 of G with a new cross link ' - o

1. If Sy and sJ do not belong to the same vertex, or if (when x
Sy and Sj belong to two distinct vertices) these two vertices are notf
connected by a chain in G, ‘we . have ) ‘ cT s

2. In the oppositemcase, wethaVéﬁ

Corollary. We find: >0 ¢>4 v};>e,0,

i\

" Theorem II. The cyclomatic number v of a multigraph is equal to
the number of linearly independent elementary cycles e :

1
!

" This means’ that v is also the dimension of a cycle base, that_is
to say, the dimension of a vector subspace produced by the cycles,1,

22 .-



. evolution (p = 1).

50 that every. other elementary cycle depends on 1t linearly [94]
.Afollows that a set of cycles will be made up of independent elementary

.eycles if each of them contains a cross-link-not contained by the B
others | . L |

'Corollary'I.YfA'graphfhas.noﬁcycles if;"and'onlyfif;fv5£:bQ?3'

S & 3
1 i
[

Corollary'II v A_graphlmaydhaveﬁa cycle‘if,fandgonly"if;fvf?,

3. Evolving . random - graphs.

The concept of. an evolv1ng graph proceeds directly from the -
f"evolv1ng chemical nature of the macromolecular systems cons1dered
 here. The evolution of these finite systems oceurs within a field
- which is itself well defined - In fact if we may say generally that
‘the number m of elements in set M of the monomers is invariable in. ‘
time, i.e.,. in the course of a chemlcal reaction there 1s no loss of
Jl_monomers from the reaction medium %—*either through evaporatlon, sub
"Ilimation distillation,vor through secondary chemical transformation
On the other hand, ‘the number a of: bonds varies in the course of tim

in a fashion directly proportional to the rate of evolution values
‘between zero and one. - o i~" :

At every moment of evolution, 1n the sense that we shall adopt ;
‘henceforth and which will be that of the polymer synthesis,.the graph;
of the system is a - partial graph G T (M R ) of graph G =v(M,jRi);off¥
the system in its saturated,state S;corresponding_togthe;limitioffits

‘ The chemical evolution of the system may thus be described by a
‘Succession of partial graphs G = (M, R ) corresponding to the. set of
discretely increasing values of'p such that '0=<ps:1 l Graph
.’G = [M R(p)] w1ll be termed evolv1ng

Given the'’ random nature of ‘the . mapping (R(p), the. system can
fbe represented by any one of . the graphs of class 9 including the set
~of graphs whose characteristic numbers v,.a, m and c satisfy the

l i
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-Euler-Poincaré relation, in which m is given in advance, and a dependsi
~on the moment of evolution considered It follows’ that if the values;
i' of v or of ¢ can be determined, it will be possible to know at least

- ‘one certain aspect of 1ts structure.,

We. can say that the graphs are statistically identical if their;ﬁﬁ
‘characteristic numbers are equal - Under these conditions, ‘class & o '
‘of these graphs can be represented conventionally by producing one of=ﬁ;;*“
them which will be designated the statistical graph or average graph.

‘;?rf" The study of,the.tOpologicalff

" structure of the graph'of an - & .
" evolving . random macromolecular f*jjfﬁ

k'i.system can be reduced convenientlyfVQif
"~ in the first approximation to-a
7 study of class § of statistical _
'kdevolving graphs whose character--;

 istic numbers at any moment )
. 'satisfy the Euler- Poincare relationﬂ"

-~ in which m is given in advance.u

3.1. Graph of an 1deal
system.

. 3.1.1. Definitions. Let us
" recall that by ideal system wev};??
‘mean any system in which‘aCtuali'wV
- bonds between two functional o

’ﬂ,groupings are subJect to no topo-ﬁ»”'ﬁ'

Support graph

. logical or metricaljconstraint,...g[.f.a

_Figure 5. Support graph C o , _;__ o o S L
' ass001ated with real graph(z) L Vertices. We assume, as.in-,
; ' _ - the following, that there are no

"vertices with only a single site.‘

-.(2)The gaps in graph L correspond statistically to nonrealized or
nonrealizable cross-links in graph G at a date p in its T
,evolution. ﬁ R : : , : e

'

!

e oo
1



‘.'The functionality ‘of the vertices will be either equal- to, or greater 7
‘than, two. The number of vertices wlth functionality f will be desig-ﬂ
~ nated by Me, and the average functionality of all vertices of the f‘L;

graph — by f.

Cross-links. Every Cross-— link occupies two arbitrary s1tes

We assume for convenience that the number of sites 1is even.: ‘The maxij{;;g:‘
-mum number a; of cross-links which the graph can support at saturationffgﬂfﬁ
,Wlll be equal to the number of pairs of sites.

»

If a graph G = (M, A, ) has a cross- 1inks, we say that. it has f4f5f g
(a; - a) pre-cross-links Wthh can become cross-links in a later =~ v

realization of the graph..

Supoort graph. We shall use the support graph to indicate a graph

= (M, A') from which any graph G '= (M, Ap) can be obtained by the '
suitable suppression of cross—links (Figure 5). For an ideal system
it is identical with the’saturated graph G = (M A ) P : '

Rate of evolution. This is expressed as:

N p a = - . ,. .. )

Its different values are whole multiples of the discrete
quantity: 2”21”[

3.1.2. Structural state equation The structural state of a :f

system will be assumed sufficiently known if -— when the number of
vertices and their functionality are given 1n advance — the charac-;?
teristic numbers of the average graph which satisfy Formula (5) are “”
" known. By expressing the number of cross-links as a function of theh*
rate of evolution, (5) yields the structural state equation of the i
evolving graphﬁ

:“v n'p_‘

HES

s

e
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r

.This relationship has a linear form. It represents ‘a plane Sl_inﬁ7
three- dimens1ona1 space with reference axes (OuCh Om ' This plane isi
_ .parallel to the blsector of angle wn oq The 1imits of variation of;
.o'parameters V, C, D determine a field in this plane 1nside which any

point represents the state of the graph (Figure 6)(3)

h
1
'x

3.1.3. Structural state--
: domain. It depends generally'onﬁ

. a certain number of constraints
, :_inherent in the system, whlch ‘have -
Iﬂjto do with the conditions. under,;;
flwhich the cross- links are produced

"ﬁ,‘In the case of an ldeal system,

i”rﬁthe only constraint to be consi—f
; dered is that of the dlstribution
-of a well-defined number of sites

- at each of the vertices..-

3.1.3.1. Constralnts - T
ﬁ;einherent in the system. ‘It deter

' mines a polygonal contour whose

- _Figure 6.  Structural state ‘"itt Vertices have the follow1ng:coor”
. domain of a multifunctional : - - =

~ideal graph. dlnates

! DR et bt e e e

]lr;o

ol ve0 LR R=
| 2 o . S
¢ =2 my. v c==nd

(3)For convenience in reading, the scale along m.has been multiplied
by an arbitrary factor.,‘,g : :



. “value of v is. IEER '

':_iEddesignates,tneﬁfunctionality7ofﬁa.node.‘

If théfvertidesQallﬁnavereven;functionality;y.

o g Ve g '"I' , : T
L T

g 2 ,.m.zm, i

'
i

. r.
- P#’ |

The contour‘of the cOrresponding domain istfPAfoCD,fW;V

If a portion or all of the vertices has an odd functionality f»
_the maximum value of ' v is ‘ . L .

vzvzo

m
"la‘ Lo
The contour of the‘corresponding domain is: A'B'CHS.

3.1.3.2. Supplementary'cyclization’COnstraint._ Here we Shallr

v 1ntroduce a supplementary constraint which, in connection W1th the-w
ﬂstudy of real system, has. a certain experimental Justification.;.We”
fp‘assume that: no cycle, even one’ reduced to a loop,: composed eXclu—
" gively of antinddes, may ex1st Under these conditions, the maximum

: ; v :—v — m,' f',j’. :
( >~m"—- ZMI)

' The contour is then A'B'CNR ,Itfisfrestrained;witharespectﬁto‘theﬁ

. preceding ones.

: 3.1.4. Reduced state equations. A comparison of evolving’grapn}
H‘iof arbitrary size but w1th the same average functionality Ey (average
~ isofunctional graphs) is possible us1ng several reduced state equa-

" tions obtained from the state Equation (7), if we define a certai'
_ number of average quantities.a- B e

et



1. Relation (7) can bé written in-the. form:

¢ "I"

v
_:-— ._5 ‘--—- g-1 1 — p

ZI"[ >IN,
P AR PURIEOE

or: B

Can

.BF.-:LMMc is the ratio. of the vertex number (or points) of the graph

) K o
to the number of its components. We shall refer to it as the average _;ﬂff

degree of punctuation. In a similar fashion, DPC = o will be
; ! R
termed the average degree of cyclomatic punctuation. Obviously,-this;,;}u“

n,lS meaningless, unless v is other. than zero. If v = 0, we have .
Carothers classical relationship [1] which in macromolecular chemistryf%ff
relates the numerical average degree of polymerization to the rate of L
‘advancement of - the polymerization in the case of macromolecular systems
‘without cycles. Let us note that PP cannot be infinite in the mathf
matical sense of the term,lbut at the most equal to ngh(c“” ;7

If p = 2/f, then v = ¢c. The system contains at leaStfone;CYclé
if it has only one'macromolecularjcomponent5 : B o
- 2. Relationship'(7)'can be written in the'formiafaﬁtﬁfuﬂ

o | T >\ N
A L TR s
‘ [ At I .

R SIS R A P T
C e 1'! bo.e (1 P )

2/ -
.
o b =1 DI )
) . P )(p2)
- DC= is the ratio of the number of linearly independent cycles of:

.the graph to the number of its components. We shall term it the
:average degree of cyclization (or cyclomatic degree) P

0
- !
i .
! \

‘The following theorem follows from that relationship



: - : =
Theorem IIT. Let there by an! evolving multifunctional graphT?;
whose average functionality of the vertices is f and the rate of .ﬁ

evolution p S ‘ 131’

; .

i 1'<% : the graph may not have linearly independentfcyCles}sof_n

T2 ' ’ ' S
If p"} : the graph is necessarily cyclical and has a cycle;;.
+if 1t is connected. If it is not connected, and if 1t contains cff”
components, it will have v = c linearly independent cycles._

If 17<§ : the.graphlmust necessarily have a cycle'baSleigg

Relationship (7) may also betwritten_invthe,form; K

Ml‘*!

Zml .me :: -

P
S
e

';‘isic
1

‘or:

which would enable us toidefinefjﬁﬁ%pZZSMH{#yﬁ'as'the average'dégféé§
of bonding (or ligamatic degree). Let us note that WL - and.D. are. -

- N

rigorously equal only 1f D=1 ,'i{e;, if );;QE.

‘ 3. We could likewise have defined the average cyclomatic_degﬁeeff
of bonding TIT =afv , which obviously is meaningless unless v # 0. - .~

3.2. - Linear and cyclomatic complexes Let us con51der the set

§ of graphs of a multifunctional macromolecular system defined by

the number and functionality of the different vertices, whose 37“'
a ) : w O , : AR

:','
o

"f2>29‘ n



= Figure 7.

— o)

(a)

) =$c=-Clc

(a) -
. planar (1, 2, 4)

planar (3) .

Line complexes.‘

i

d(b)

- to a connected graph whose set M of vertices is small we return to
the classical concepts in general chemistry of isomerism, tautomerism“
(set of desmotropic forms), mesomerism [95] or resonance [96],:4

| or.less-simultaneously;vgffﬂjq;

”ﬂui ‘one way, the components of a grapl
"‘h‘gCO, ,

Example of'isocyclo— h:
evolutive complexes of a graph ..

G = (M, R ) (p and v constantsg;? functionality

Cyclomatic complexes,‘non—[uf P
" ‘,i ‘given, will constitute a set of

Tl’ T2... It is possible to

. arrange by type, in one and only »

‘Such an "arrangement" is
called a complex .

We shall use the term 11near

omplex of g to de51gnate the re-m
striction of the complex to the: vf
set of types corresponding to. the@
cycleless components (or linear - : .
. trees, floating linea
In alf

s ‘components :
chains, isolated vertices)
‘similar manner, we .shall. call a i
j’cyclomatic complex of g, the reéa
'hstriction of the complex to thep
fset of types corresponding to B

"ﬁcyclic components.

, The set of complexes of graph:u
of a class &

of.statistlcal graphs‘r
for which, :

‘addition'to'the“
and the number of

11’1

‘vertices, the rate of evolution

;vand the cyclomatic number are3ﬂ"

1socyclo evolving complexes f e
(Figure 7). Let us note that,
the case where class‘ & is reduced



".constitute the amount of- various chain cycle equilibrium states

o concept of trans-reaction.

. The ensemble of complexes of graphs in different classes & of o

f statistical graphs constitutes an ensemble of cyclo- isoevolutive

~ complexes (Figure 8). for which the cyclomatic number takes’ on all

l'permissible values which satisfy- the equation of the structural -
1mstate, for a fixed rate of growth. ' '

At a given point P of growth these two ensembles of complexesf

i _which are topologically possible, which introduces the important

3. 3 l"'Additional'Constraints. Compared with an ideal systemi
‘a real system can. present and does present in general, a certain |
- number of additional constraints.{ Here we will only consider thoset
which influence the nature of the points. ' ' o |

. If bonds can be established ‘as in the case of an ideal system
: between two arbitrary points which from the ‘point. of view of the
establishment of bonds can be considered identical we say. that thef
System 1s ‘homogamic. If on the other hand bonds cannot be estab-,
lished exclusively between well determined pairs of points then i
-only those bonds can appear which are specific to the nature of the%
points from which they emanate., ‘ - SN
. i. : ﬁ | ‘

Chemistry and. even biology have numerous and 1mportant example

-of such bonds. The specific characteristic is that there are L i
systems - which have points which of necessity, belong to species N
which can be differentiated Such systems will be called hetero-f

gamic. ‘ L o N

3.3.2. Cyclisation'constraint siseéiﬁéﬁféi”JuééifiAAEibh;w

This constraint is introduced for convenience in the study of a ~f;
real system and can be justified to an acceptable degree" of approxi
‘mation in the study of the chemistry of real" systems. In effect
.whereas ‘in chemistry there are examples ‘of cyclical molecules, whic

o
PR P

3T



- On the other hand, we admit that there is a possibility of. cycliza

vitonly consist of bifunctional
'lmonomers, the number of repetition
i {lmodes which participate in the v
J“iﬂ{cyclical structure is always’ i

S { ©..small and the number of these’

o :E 1ﬂﬁ?”oligomers is small in general_in
f,]“f fm;:the system. Thus,‘for'eXamplegl
B0 ';" the number of repetition modes "

. = 1s on the order of 3, 5 or 6 for:
‘VfVcyc1o—oligohexamethylenediamines"

|

B P , S
"rﬂ}ﬂﬂ5[97] There are 1, 2 or U such

b

1

|

'if-repetitions for mono- and bi--,'
.gfﬁ:cycloadipate of hexamethylenedia
.;t?:@-mine [98] [99]. It has been
‘f?ﬁf"possible to isolate cyclical
:‘”i dimers, trimers and tetramers ofv

! :

Lfﬂe caprolactame (1001, cyclical

@/Q}
'Figure 8. Example of cyclomatic monomers and dimers of adipate ofi

cyclo-isoevolutive complexes f‘fjdecamethylenediamine [101]

of a graph G 5 (M, R)) (p.= . "~
v p ,gl has also been possible to 1solate
constant w'V—¢=ﬂ constant)
' : ‘ , -Lcyclic trimers from polyterephtha”

, o Vy. late of glycol [102] or of the.
- polysiloxanes. [103] The existence of such oligomers conforms to the
~ conditions of minimal internal stress of the cycle [102] or conditions

of maximum stabilization of the structure by hydrogen bonds [100]
The proportion of these cyclical oligomerS' which seems to depend on

temperature, is’ generally small it is on the order of 1- part per'
100 {102] to 6 parts‘per 100 [104] with respect to weight
. The totality of these experimental data makes it possible to 2
- make our hypothesis of non—cyclisation of linear chains legitimate.

- tion of branched chains, no matter what the number of nodes is.
The theoretical expression for this constraint in terms of

~ the theory of graphs simply . amounts to the statement that. theff
supporting graph E,‘associated with the real graph is connected



3.3.3. HomogamiC‘Graph This is a graph of a macromolecular f
. system for which’ 'the reacting points are free radical extremities,

.“lfor example. For this reason, we will include in this category
"systems whose reactive functions' are ethylen@ functions, or acety-f

. lene - functions, by assimilating an ethylenme function at a pair. e

‘“h,monomer'which supports 1it. In reality, the functionality‘will be;;ﬁ

. Thus, an'ethylene  function will be bifunctional in the general case

o reaction).

o ethylene bond 1s considered as a cycle of the graph

of reactive points. .This’ ‘gives a functionality equal to two to theﬂ

'a constraint which 1s inherent toxthe real system under considerationf

- of vinyl derivatives._ However, in.certain cases, it must be con—f‘f‘
"sidered as monofunctional ("dimerisation" of fatty ethylene - acids)
There is also the possibility that two double conJugate bonds must,cn
be considered as a bifunctional ensemble (a Diels and Alder type, ;

. This 1is the commonly used approach but one should also con—i\
- sider the evolution of the system from the viewpoint of evolution of’f
" the ensemble of cyclomatic complexes of its multigraph A‘double_i

If we adopt the first point of view, the representation of a
. real graph at a certain point P of evolution will be obtained from ,
the supporting graph I by suppressing a sultable number of cross—links
corresponding to the number of prior cross=links. A branch of- ‘the. ,
real graph (strictly speaking, a: pre—branch) w1ll consist of a branch
from the supporting graph containing all the realizations correspond—f
ing to the pair of nodal points, to the anti—nodes to the cross- e
links ‘and the prior cross—links of: this branch. Let- B? be a. branch ;
.having k possible. cross-links (k‘—‘l anti—nodes) and i. pre—cross—links

We will say that this branch is of order i and has a. ligamlc number kl

3.3.4. Heterogamic Graph In the following, heterogamic systems

_ which we will examine, will cons1st of points which only belong to
. two distinct types. We will: consider systems’ in the polyester class

and in the polyamide class, etc.ﬁ and we will exclude their copolyV*
.condensates. ;*ﬁ;} ';f*»- o & T -
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Let N, and NB,respectively,,be the number of points 1n space 'itftﬁt
A and B.,, We'set: -~ . - . . | . , ‘
| :fﬁ?; ' | ..__,.(18)‘,..,~

When the stoichiometric ratio r 1s different from one,'the supportin“
graph consists’ of a certain number of cross-links which occupy _
identical pailrs. of points . which belong to the: ‘major portion of space
{and cannot be realized in the real graph ; We will calllthem anti—‘

cross links. - o '»:Vﬁgu

Let Py and pB, respectively, be the proportion of points A and o
: B which are involved in an’ intersection of the real graph We~:“g$‘“ffffb

, N

always have: . - o '=_-fc“_'v. {qw;_g
B ; I\A p“ ’” I\ul,n ‘
. . i N
where:
. »-47[’.\ rJI)". ! ' ) 1 o (19) N 1

The number of cross—linRS'of the'real graph can only befat'the.mOSt#f“
equal to the number of points whlch belong to the mlnor portion of
space. The rate of evolution 1s expressed by..' LT

P if r>1 C

1

By-generalized rate of eVolution p,we”mean the number of
completed bonds to the number of bonds which can and cannot be
realized. For the ‘graph Z this, is the ratio of the number of
achleved cross-links to the total. number of cross-links (cross—links

.pre cross-links, anti-cross-links), or the conversion rate of" these
,pre-cross—links into cross-links, no matter what their. type and
taken with respect to all of these cross—links. We immediately find

'.:— F—_—
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The representation of a real graph at a certain point p in. its:?f”ﬁi'
evolution 1s. obtained from the supporting graph T by suppressing the
pre—cross-links and the anti—cross-links in a. convenient way and in o
| a random fashion. o : L SRS

The notion of generalized rate of evolution can remain com—'hf*l"f"’
pletely general according to theorem III. ' '

Let B?d be a ‘branch having k cross-links which are possible ‘ﬁgﬂﬁ?lf
and not possible (k - 1 anti—nodes, i pre—cross-links and - J . anti->. ;;tttQ-
cross-links) We say that this branch with- 1igamic number k- is of fi;

- order i and of anti-order J.

Even though we have already:considered the parity of'the'pointb“
3 distribution with respect to the nodes, we must add the constraint
regarding the nature of the point distribution in this case. It ‘may’
be taken into account in a. convenient fashion by first examining it

at the level of the anti-nodes. ‘This leads to consideration of the ;’
following two cases: . . : %h“, - e : B :g;-oxtw

ir.

3.3. M 1. PseudoéHeterogamic Graphs. For these graphs,;ther

.anti-nodes contain two points of different kinds' a point. A and a =

'

"point B. : S ',_f} ' ' Ng,u_,wn.”h;uiw.”

one, the branches of ‘the supporting graph Z can only either be of
anti-order zero, or anti-order one., ‘

If the stoichiometric ratio 1s such that all tne branches have.
anti-order one, the graph consists of an ensemble of branched |
components which" all ‘have .one node. Polymers in the polyamide
class have a network of this type ("star") and have already been:: .';
examined [56].. o S

3.3.4.2.. True Heterogamic Graphs. .For these graphs, the anti-

‘ nodes have two points which belong to the same space A or B. The
‘ anti-nodes A and the anti-nodes B can exist in any proportion.;pf

e -. . t




- cross-links will be generated * In’'this way the supporting graph Zi

- brings with it a’ reduction equal to the unit of the number of o

Three different types of branches must be. considered depending
on the type of nodal pointS' branches of type AA, AB or BB ;
Branches of the type AB are different from branches having identical
extremities due to the parity of the number of anti-nodes which theyjn
can have 1n their saturated form.' When the stoichiometric ratio is ;
, different from one, it.1s convenient for the study of the. supporting
graph to add to the system anti—nodes ‘belonging to the minor portion
space, in a number which will satisfy the stoichiometry ' These_;:;
f"anti-nodes which cannot be distinguished from the real anti—nodes'w
of the’ system from the point of view of the random generation of the
'Agraph but, nevertheless measurable by an appropriate procedure

will be called fictitious.;im 2
The supporting graph.of this‘new system will be called‘ficti-}fﬂ?
__,cious supporting graph Z'. ‘A cross-link established between ‘a real i
o point and a ficticious p01nt will be called fictitious. By suppressing
f fictitious anti-nodes and pairs of fictitious cross-links from the "’
ensemble of the branches of the graph)l' .the same number of anti— .

~ of the real graph will be constructed whose branches can be of any
| arbitrary anti-order, in contrast to the pseudo—heterogamic graphs{"

It follows from the preceding that- we have been able to take
into account the constraint regarding the distribution of the nature
" of the p01nts both for ‘the. anti—nodes, Tas. well as “for’ the nodesij

oy, ‘Axiomatic Deﬁinitions. "'7‘3LG

4.1, 'Intermolecular'and'Intramolecular’Bonds. Bonds existing

within a chemical system will be, called intermolecular or intra—‘
'~ molecular if the cross-links of its evolution graph have propertie’
1 and 2 of theorem I, respectively ' - ' Lo

o

Stated differently, the creation of an intermolecular bond

molecules of the system. However the realization of an. intra—:};
. molecular bond keeps the number of molecules constant but ipso facto,



" make the components connected and without cycles. From this, it

,brings about a cycle which is 1inear1y independent This propositio
1s also true in the opposite sensé’ when considering the evolution*
" in ‘the direction of degradation.{ﬂﬂ ol
‘ It follows from this definition that the intermolecular or:
intramolecular character is not necessarily an inherent property of
the bond. It depends ‘on ‘a certain topological context. '

Thus, a priori, a1l bonds which participate in ‘the 'base of an
cycle can be cons1dered as intramolecular.' However, we know that
~there exists only a certain number .V, the suppression of which will

follows that -all remalning bonds are intermolecular bonds.“

- On the other hand, we . can say,‘a priori and for a given T
topological configuration, that all- bonds Which do not participate
in a cycle base -are intermolecular.' e :

We should note that- this definition which has a topological;
origin, does not. take into account ‘the nature of thelbonds which
in reality, can be differentiated according to their free energy ofA
activation. Any definition, based primarily on the nature of the ’
bond, and no matter how convenient it is in certain simple cases,
will be no more arbitrary from the topological point of view and ,
therefore, could lead to misunderstandings. ' SR
| h.2. - Gelification. By gelification of a multifunctional

macromolecular system we mean the passage from a- nongelified state
to a gelified state. - o

The"termidegelification‘can'deSignate‘the opposite processtﬁ
No matter what the evolution direction, we will adapt the term ﬁ'
critical transition. ' ‘ : ' : e e

The physical physico-chemical and mechanical properties of
.multifunctional macromolecular systems, in’ either one of these two
'states, are sufficiently different to suggest that they depend

A L 3




-~ 7 or the individual nature of the molecules, we can express the

.*:.dimensional space can be considered completely separately from the

» a minimal fusion: temperature, at a relatively low viscosity and -

.directly on the nature ofvthe nét"‘ If we'only'examine the most‘ :

’ representative properties? fusibility, viscosity, solubility, i
' expansion which are intimately connected to the relative mobility,

- structural state: of the net corresponding to the nongelified and
"_gelified state in terms of the theory of graphs. '

b.3. Nongelified State.' We define it as the structural statem
- .-of ‘a macromolecular system whose corresponding graph 1is planar. e

1

This definition with which it is possible to represent a real
finite system in a plane (nonclosed surface or closed surface on a
sphere with infinite radius), without intersection of any two cross—
links, implies that the components of the real system in a three-,j{

point of view of: its physical and chemical properties,i This holds

maximum solubility,’or even total solubility in an appropriatevf;_
7_solvent S -

It should be noted that this definition does not préjud'ge» the
lvalue of the cyclomatic number of the graph which ‘cannot be Zero as
" certain experimental results show.f Thus,_cyclical molecules can_be“
-‘soluble, since 1t 1s possible to ektract them with solvents (see
§ 3.3.2). On the other hand, the nongelified ‘state 1s not incompati
ble with cycles, as -the example of dialyl orthophthalate shows '
[35- “23) ’ | S fidy. o :
M.M Gelified‘State._.We'define it as the structural state,ofﬁ
. a macromolecular system‘wh03e'corresponding‘graph'is nonplanar, ige}
S-topological, provided'that theﬁorder of S is sufficiently:hightjv

This definition of necessity 1mp1ies that the cyclomatic number

of the graph be nonzero.: On the other hand, it makes no hypothesis'
regarding the conneected . property of the graph It results that the
ensemble of random graph components ‘can be partitioned into the
 following subgroups'“f) : ' o Lo o



" — the subgroup of planar components corresponding to theﬂ‘mififaqihh
soluble fraction (base fraction), e

4——-the subgroup of nonplanar components corresponding to the o
insoluble fraction (gel. fraction) g e ‘-?;_Qf

For the latter subgroup, the structural state 1is such: that the i
cyclical chains are no longer separate and that they are more or
less branched. In a solvent for example, thelr 1imited separation
1s translated into a swelling, which 1tself is progressively limited
the more compact the net is. 1i.e.,-the larger is the

cyclomatic number for the same number of corners, either due to a"
higher rate of evolution, or because there exist a 1arger number of RO
nodes having a higher functionality in. the center .of the system.zxf'fwwja'

The concepts of subgroups of planar and nonplanar components
- 1is naturally related to linear and cyclomatic complexes defined above'

'Nevertheless, they do not replace the former because the soluble'
.fraction can contain cyclic molecules (planar)

In general terms it ‘can be sald that the graph corresponding
to the gel fraction - consists of subgraphs ‘which are nonplanar and
"~ have cyclomatic complexes. Its cyclomatlc number v!' will, in general
' be . different from the cyclomatic number v of the graph of . the system.jﬁ;ff
The number of its- components will® depend to the first approximatlon e
on the growth mode of the polymer either in mass or. in solution.,‘“
It can be assumed that with respect to mass, the number of the .

molecules of the gel fraction will be limited eventually to a. single F
macromolecule (macrogel) In solution, this number can be much
larger (microgel [105]) . Here the macromolecules of the gel- - :
cannot consist of a single component but possibly of several com-?.
" ‘ponents connected ‘to a single molecule by topological and : non-ilu‘ﬁ
planar bonds of the trans-cyclical type (Figure 7 (1) (2). (u) and”
g~Figure 8). Even though this type of bond which was suggested in‘”f*
- the study of polysiloxanes [106] and polychlorines of phosphonitrile
[107], appear nore frequently in the case of linear polymers [108]
it 1is probably much more probable in the case of multifunctional
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- identifying the gel fraction with' the cyclomatic part This hypo--d

S c“lc‘,; 05 I "«)c -OH

.’ ) (Cﬂzhz “t

Figure 9. Example of a topologiuw' The theoretical quantitative
cal bond. .; evaluation of sol and gel’ fractionsl

;figurations. o .

- (a) 34-34 catenary of Wasser--% of a random and evolving macro--- .
“man [109].
(b) Trans-cyclic isomer (2
components = 1'molecule). _
(e¢) Exo—cyclicrisomer'(ZZCOm—
ponents = 2 molecules).

f molecular system cannot be done
precisely without certain hypo-aV“
‘theses which depend on the exis-'
tence of certain experimental

_ ’} constraints. These hypotheses

will fix the number of molecular components and: possibly. the. H”-g

cyclomatic number of each of the fractions. ' |

Without any particular constraint and, in the case of a mass
change, the most plausible and most suitable hypothesis consists 0.

thesis amounts to assimilating the soluble fraction in the linear
part, il.e., 1t amounts to excluding the cyclical molecules from the l
soluble fraction, even the planar ones, This. hypothesis 1s acceptablef
if it 1s assumed that the multifunctional cyclical components are: ‘
very probably not planar because of their random . production in- space

5._ Structural andition ofVCritical Transition.

- For a finite, random evolutionary graph this is: the relation-w'
ship which certain characteristic quantities must satisfy during
__evolution when passing from the planar graph state to the S-topolo—

gical graph state.»

A S—topological graph is necessarily cyclical and the problem
consists of establishing the necessary condition for the appearanceg"
' of the first: Cycle . , l;.’ C ’ . .‘ e .w ". e s ‘.{x.. .N\“ R .l R
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. Bi 1/5° which is of a’ lower order.‘ The anti—order J 1is nonevolutive

- evolution p satisfies the relationship_

_ Let us consider the most general case of a true, heterogamic _
_ “graph which is not stoichiometric.@ If we take into account that the
'fvlinear chains are not cyclical the graph can be considered as™
consisting of an: ensemble of nodes with functionality F and an :

‘T ensemble of branches ng which belong to the classes Bij; Vk” :Leﬁﬁﬁ
- us associate a graph G = (N, A ) to the graph G = (M, B ), t -
. corners of which are ‘nodes and the ‘cross-links of which are the
branches of G. Each stage of evolution must result in the passage
- Through a certain number of cross—links of class Bij into’ the classf
’i'The sequences of Bij’ 1> 0, VJ constitute 'an ordered partition of
the evolutionary connectiveness of the various classes of cross—link
: towards the total evolutionary connectivity. ’ ‘ ' S
According to theorem III, a graph whose corners are nodes of

- functionality F and the cross—links of which will be produced with‘
equal probability, will. of necessity be cyclical if’the rate of

: p;:-

. For a graph such'as G and for'whichftheZcrOSsalinks are notbpro;_y
duced with equal probability in time, the'cyclization'will;appear‘
of neCeSSity if the‘preceding relationShip is satisfied'for the 4
. statistical subgraph This is true ir the pre—cross—links and thelz
| anti-cross-links reach. the maximum evolutionary connectivity with +

'the greatest probability., Let pY be the rate of evolution of this

subgraph and let biJ be. the number of cross—links of class Bij “We
“have: CRTEE Q=*f.:;'\> ?’]f e Y L
o x’,' boo‘l bno 4 : JbOI..:V ' (22 )
! ' B ™1 B 'v

i

probability related to the connected branches of ‘the statistical

. Subensemble which is most probable and which is capable of" becoming
. ecyclic by evolution.; L . :




If Pij are. the probabilities associated with the branches of

the graph G and by setting

1

PO‘ =§‘P¢] ; P
I ;

Jﬂl;v;
the structural conditionﬁfor“critical transition can be written as:
! . B ' | . | i—-—,w e P————-—-—::,;l_ Tor = i" .‘. o . e (23)
‘ This relationship immediately defines the statistical cyclical
subgraph of. G which according to our hypothesis, constitutes the
- graph for the gelified fraction.w It has_/bY cross-links and oy nodes
~such that ' R : L S O P

by WP+ Pk Bl | B 7'('2*4':',)_
1’. ! ny'= 2by/1 RV R

The cyclomatic number v, which is a. topological invariant of;
_G and G will be given by the equation for the structural state-f

il
l

1
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, Its minimum value for cY l will be the one for the gel -
,irfraction which consists of a single component This possibility v
B exists in the case of a macrogelr,vv R P ST
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- secutive branches can be obtained by a drawing procedure.. It con—

B e L

" THIRD PART

SR

AU ; . I
' STOCHASTIC DESCRIPTION = -

1. Conditions for Random Production.

The conditions for random production of the net of multifunction
al macromolecular systems considered here essentially consist of '
- a relationship which is equiprobable in time and space for bonds
~which can be realized in chemistry between reactive points ofi “55
. monomers. o L

The corresponding graphs can be described by the evaluation of B
the proportions of the various categories of. branches. They contain
all equiprobable realizations of corners and cross—links which make
- up the branches. v o f

One class of graphs defined by having the ‘same’ number of con—

-slsts of drawing the different entities (nodes, anti-nodes cross-;

links, pre-cross-links 'anti—cross-links) from an urn havingna |
. definite composition. The drawing is governed by a law U which _
specifies on the one hand the. permitted sequences and, on the other’
~hand, the forbidden sequences which result in returning the drawn '
~entity to the urn. Under these conditions, it can be shown [110]
that one obtains an- approximation to the probability for the relative
, proportions of the various categories of possible branches. After
each permitted drawing, the initial state of the urn is restored

‘ These considerations, as well as the resulting calculations

. have been described by other authors [111]. We will limit outselves
to describing the main results which makes it possible to establish
the equation for critical transition for any system which belongs to*'

e
o



" one of these three types considered here using the critical transi—
; tion structure condition [23].t The study of this equation leads to
" the calculation of the critical'rate of evolution, as well as- to ‘

the calculation of the possible 1limits of the existence region for
a critical transition as a function of the structural parameters of
~ the particular system under consideration. ‘ L R '

. , L -tifVl
2. Homogamic Systems. :
- ’ P

Let a be the proportion of points which belong to the multi";
functional units. The principal entities- can be- schematicallyh
represented (Figure lO) S ' R

N R . . ! ) e L .
;»«? : ; CEL e e
AN . e E.—.-. LT e,

oo —

“qiiNode_ Anti—node Cross link Pre cross-link 73
R ‘ s

L. N ) . \b‘
S '.;.__r 1""1' [ p— "‘I_..J. i

Zero order 1ine

Ky . Al

JK-T r——- T- -T T*tﬁ,:[

Non—zero ordar 1ine (i—3) S -:‘ff;’f

Figure 10 Graph for a homogamic system.n’”:*

entities.

2.1. PrObabilitieS'ASSOCiated With the. VarIOUS‘Classesbof.iﬁ
Branches."Zero order of branches —

'4){'”;~i ........ L;ﬂ
'_°‘r 1-—p(l—-z) B

‘First order of'branches: ER

:pTTW_ﬂL:ILQF*

11—1'(1-—¢))’ b

) Branches'offarbitrary'order:c;

L L genaft o ple
f”‘ S =

5,:.“
' '-‘

: The probabilities associated with the branches B? are Shown in
Table I. : : O ,: a T ORAe
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TABLE I PROBABILITIES ASSOCIATED WITH THE |

e BRANCHES OF A HOMOGAMIC GRAPH = '&Q-‘f?j“"Vﬁfp
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2. 2' " Critical transition equa’cion. A homogamic system which

does not: have any branches with an’ anti—order has the following

l

,f‘rom which it follows tha’c

H-pﬁ—ﬂ] C2.
1__1, R .-17.-‘.__2' °,

- For any value of p different from one, we have:’
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2.2.1. Algebraic Solution. This equation always has a root
A homogamic system always becomes gelified
f the structural parameters are, if the )

© between zero and one.
7 no matter what its values o
~7.critical rate of evolution is reached

v

ST 2u—wu—m I \'ffg%@af“'
If o = 1, the system consists solely of multifunctional units, that
is: 'pc>= 2/F B 'gff . X SRR TR R

2.2.2. Graphical‘SolutiOn. The equation can always be put “

l
in the’ form“

' i
f.-,tf /f !, e

‘Figure “11. Nomogram for the determina—»
~‘tion of the critical transition of a.
‘~homogamic system. ’ - : S
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This nomogram shows that for a given value of F the value of the'A
' critical rate becomes smaller in proportion to the number of multi-&
functional units. Also, for the same proportion. of reactive points,
. especially for a small proportion,'corresponding to multifunctional;f;
units, the value of the critical yield decreases very rapidly when ‘ff
the functionality increases.l These results justify the fact that f
gelification appears suddenly:in’ systems which have an average highf
functionality [, in a general way.' This 1s true outside of any L
considerations of chemical kinetics. . ' .

~.3. Pseudoheterogamic Systems.

By o and B, we will designate the proportions of points’A and7417"7
B which belong to multifunctional units. The principal entities
.'can be schematically representedi(Figure 12). L

~——— )(_.- . .-.... 9—-. S . R S , y .
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'-”Egée Anti—node Cross 11nk Pre cross—link Tfif”71~fﬂf
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" : Zero order llne‘
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\:f-—-e-)\——o-k—-o-)- --—w’:‘ Y g - 55
Non—zero orderlline (1—3)

lFigure'12 Graph for a pseudo-heterogamic }ff
system. Schematic representation of the
principal .entities.

3.1..“Pr0babilities'Ass00iated With‘the'Different'ClasseS'of
" Branches. We assume that r > 1 and will express the results as a
function of the generalized evolution rate p ey '

3}1.1.'"Branches‘With:Anti—Order‘Zero; BranchesfofiZerolorderai

'J@¢1~pu—m ;5~‘4- R
m——— : i . ; ] - E—
Branches of order one: .
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Branches of*arbitraryzorder,cf

B = e (- p) SRR
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'3.1;2. lBranches‘With'Anti;Order'One; Branchesfbf oraepizehq

N

- e rk11-~N1—ﬁ) o '55ﬁ7(39{?7=r+

BrancheS*offarbitrary,order#cf

- u—m(—~ o) SERRRURS
[Py we o = (MO)'JN;
11 ll-zwl—PU‘“M1 Al
"~ .The probabilities associated with the branches ng'are COllected
in Table II. When the value -of the stoichiometric ratio is lessmthan
one, the probabilities associated with branches BiJ are obtained B
from the preceding ones by carrying out the transformations r + l/r :
.and B + «a. _ — ' S e

3. 2 'EquationS'Of'Critical Transition. The value of the anti—w
order of branches of a pseudo—heterogamic system cannot be equal to é
~one, and the corresponding structural condition for critical transi-
tion is written as: o ' ' ' ‘ :

.w;w+hth T

.; i

"from which it follows that

zm—pm~m1 2“¥f4i¥m”' N
EEETNE = R

.or:
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" the following form:

by setting:”"
» - 1 ‘l- ..IJ

Ro== ev+1)‘

TR

. This Equation (43) is, therefore, in the form of Equation- (30) for
3 the homogamic system (30) up to a -factor of R. This correcting
factor takes into account the st01chiometry which stands in .a direct'93'
‘relationship with the structural parameters for a pseudo-heterogamiciﬁ}?ﬁji
system. In particular, if the system is~ st01chiometrlc, ‘the crlticalifﬂ"“:
transition equation is identical with ‘the one for a homogamic system.r

n"". .'n‘.
i, . B

For any value of p different from one, it can be written in "]:?"

B = ) (F = 1) = p(F 2 2R) 4 M0, :d”'drﬁkh5f'

3.2.1. " Algebraic Solution. ‘The critical value of- the evolutionﬁlﬂf“
rate will be given by the root of this equation Whlch corresponds to .
‘the possible values of the evolutlon rate between zero and one, 1, e.,:f“_“a

for values of p such that

This condition is satisfied if:

RO U e

In the case where the st01chlometric ratio T is 1ess than one,

we would also have j T

o “_"s <1 o Sl ;*

1 balF L2 .1 f‘ : TJ:F(AS).T

'In a general way, the critical transition will be possible if the .
parametric condition for critical transition is satisfied i e.,ﬂif:

. “.41 . " ‘v.‘

E.t'd l,:,_' | }:Tﬂ v_' - i-jf i<r.t;f;f¥f(u§);f};i




- p for a determined value of F. Therefore, on each of the curves. of

functional units. R p;@

The critical transition of necessity 1s obtained if the critical
value of the evolution rate is reached i.e., for: ‘ e

(l-—2+?R)—-[(I -2 - 21() 91{(1—,,)() —-2)]1/3 o .

| Swm-AEFE-ns T (50)

rg=1, 1t follows.that‘a_='1?ﬁand’ therefore,4p¢a= Z/E;Tj;i;:y,*
| 3.2.2.  Graphical Solution.. The equation can always be written
~in the form: e " ' R

'-— 24-2R . em . N
‘¥72 +F¢2§3,,. %=-“4;&;(5lX?

»m—m

As in the preceding case, we can construct the nomogram (Figure 13)
. from the two families of curves-'ﬁ o o
'ﬁﬂmm%fﬁ~M-. R T3

o ‘F—24+2R_ M o
_ V(P (’,,r,])— T F_g 1.4-_.2-.' . : b (53)

 The family of straight lines w(p, 8, r, F ) itself consists. of‘two
subfamilies which correspond to the region of permissible values of~

the family ¢(p, B), there is a. region GL such that the point G 1s,ﬂ-
" the intersection with ¥(p, 8, r, F) for r = 1. The point L has ‘the
abscissa which corresponds to the intersection of the line w(p, B,
~r, F) for r = » with ‘the axis' Op , that is: 2/[2 + B(F - 2)] |
. nomogram consists of the trace of the double family of lines [20];

ce i 2rp - _p.. -
PEFERT —pi

which makes it'possible to °él¢uiéﬁe, P, andch;- o
4. True Heterogamic Systems. ' '

‘,\
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PFigure 13. Nomogram for determining the critical R
T transition of a pseudo-heterogrmic system T

We will first examine the simple case of: stoichiometric’Systém
whose branches do not have an anti'order. The description of non-
'”stoichiometrlcsystems will be obtained from the preceding one:;¥
by suppre351ng the elements which:were called fictitious. -The’ﬁ‘ A
number of these suppressed elements correspond to the’ value of, the ff;
stoichiometric ratio of the system under consideration. - e

, In a general way, because of'the particular nature of the _
" repetition modeiAA- -BB which a median pre- -cross- 11nk can have thevarious
‘:possible branches have two- different maximum orders of magnitude,
depending on the parity of their minimal. ligamic number k which 1is’
connected with the branch type. The principal entities can be
schematically represented (Figure 14) o

v

. 4{1L£fStoichiometric'Systemsﬁ 5;“y

”;{5225



- We will have, by setting F{!- ) (l~{+)m’ :

e X"—"X .. , ___ . ' . l x:;_.__}:‘ . ) b_,( ._,___.’_o____ _-
. Anti-node A . f* Flctltious ' .hm;FFlctltious ,
o : ‘ Anti—node A(r < 1) Crossllnk (r< l
:/O i R : L
- Node . - o Anti-node B Flctitlous : : Flctltiousifﬁ”r
; T ' Antl—node B(r.>1) Crossllnk (r >1)1
‘Branch g (TypefAA) -3 xw_ﬂeu—%a~—-ox——¥c——o- ;k I
s | NV i e Nz
Branch 83, - ;(Type AB)‘“eéé”ﬁ@f*fxﬁfo””“oﬂfﬁh' >3
R » L Anti- order ¥
Branch 7. th!_ . (Type BB) —):gﬁ*o')\‘"X*C‘-"-O X-;th 0—'\4)\“‘“‘%s u:.‘-' .. -
Figure lu ‘Graph of a true heterogamic system;;x'
. . Schematic. representation of the o
prin01n1e entitles (example of branches ‘
- Bij)
h,1.1. Probablllties A53001ated With ‘The VariOUS‘ClasseS'of

" Branches. We will now give the general expressions which make it
" possible to find the probability associated with a class of branche
of order given in advance (where zero is considered even) ' |

The expre551ons for the BB’ type branches are derived from those;

of type AA by the transformation‘4<;3 in- the present case (r

IR
1 Lo

Odd“order;lfff:‘”;.



'_fto the various monomer units are . given by the following 5[*;¢,gw;

b i - A
o ' ] -1 T e+l

‘*,P“r-pu~mm~w’u—m’*“?f N
B 3 RN 'l a)tll-—(l- y)et1 - . (5)4) :

Tha(d — a‘)“‘* LI

| i s
,jw"m*~5u~pnu-ou-m1‘ PR LTy
T , fopajebs o (Tma)edd o 0T T T e

R e

Even order:

Pyt = "‘“‘51' U )x {':._1';: .
. L e o
*':.:;.wﬂ-mem—-«wu meoe e se)

ot x(1kar+lk(t—ar+it

e A 2(1——.1.)¢+1 o
o G ldsenm oo o (BT) -

s LT

These results are. schematically represented in Table III in
‘which m 1is such that the number of repetition modes of a branch is
equal to m - 1 | : R - ;

h.1.2. ‘Equation‘for‘Critical‘Transition. It is immediately
derived from the equation for nonstoichiometrlcsystems by setting

r = 1.

4.2. Nonstoichiometric Systems, We will: first assume. that theﬁf
value of thestoichiometricretio 1s less than one for convenience
of notation. It follows that. the proportions of points A belonging‘

real nodal points: ra. . . o a”;.%t:t??fﬁf
real anti-nodal points: r(I - a). ST e T
fictitious anti-nodal points: 1 - r.

VZSM



TABLEAIIIf

TRUE STOICHIOMETRICHETEROGAMIC GRAPH

PROBABILITIES ASSOCIATED TO THE BRA\JCHLb OF A

m
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h,2.1. ProbabilitieS‘Associated With The Various Classes of

Branches.

§.2.1.1. - Probabilities Related to Branches With Anti—Order.fﬁ?»“
Zero. They are’ immediately derived from the probabilities associatedw
with the branches of thest01chiometric system by means of the trans'

formations.,.
v -'p."‘-’plu‘{.
‘ [ f»"-'> re -

Y G S N

h.2.1.2. ProbabilitieS'Related to Branches With NonzeTO‘Anti-'_f
" Order. The P?. are obtained from the Pfo o

corresponding to the ‘ o
st01chiometricsystem by replacing in -the branches the. real repetition

modes by the fictitious repetition modes which consist of a real
anti-node of species B and a fictitious anti-node of species A This
is done in a uniform manner. It follows that, in contrast to the
A order with which all the,cross;links are distributed the anti orde
is distributed over allvthe‘crossélinks. Under these conditions

. We can utllize the'Calculation procedure used for evaluating the -
probabilities associated with branches of order 1 of the homogamio
: system beginning with branches of order one. ' ‘

k.2.1.3. ProbabilitieS'ASSOCiated'With The Branches of Orderig

" Zero and Anti-Order Nonzero. These intervene when the equation fo_‘

critical transition is. established. For:eachltype of“branch,fweﬁ

designate ‘them by PO

«4 ”
" cedure which leads to the following results.

';AA ‘ ' "" 1’ (1"’)“ pr o . e L pat
Coa (mpm-r,, - a)(a-,,)m lpA(l—a)(‘l 3) (1) (1- r;)) S (59)
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o

?lf'g pafpn1 q.u-anx~l]U-uuufgnq-mLu-nﬂfcn 'jﬁ{i(gt;izi.”“
P drappi=n)i-d SN TR LT
e Bil-rp (- el (= pl0-rp (- )R- 000 (61)"_ |

h.2.1.4. ResultS'for the Ensemble. The probabilities associated
with the various branches B?J can be collected in a table which. can

be derived from Table III by an apprOpriate transformation and by‘_’@‘*
adding to it a third dimension corresponding to the values of thew7“5
anti-order. " - : :

In the case where r > 1, the results are derived from the L

preceding ones by the following transformations' L ;in;”.uglﬁ
PAV'-> P
= p
= Ar.
L,2. 2 Equation‘for'critical TransitiOn. The structural R

AR . e
- from which it follows that, by replacing Varions‘terms;byptheirikit
- .expressions calculated preViously; S N

— If r <1 and by.subStituting PA for p:

[r’a P18} 222rp A r,’fp’(l-—-a)] [1=rpt (l—-u) (1 .
[1“'1'("‘“)(‘-91'"(1— r) (1=2/1{ 2riat '("'IQ (=8
< 2ulr(l = pl (14 pr(1—3) (18] 4-2r2p(1 =~ (1=} cLL

S {(3rpt{i=-a) {1 (1=} (1=2) - b (1=r) [ *I'(l‘-e)’ et -
i -1 _Mrpu—f) O e ) L (63) -

— If r > l the corresponding equation in which.p éipé;disg““
from the above expression by the transformations' TR A

T
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These two equations can be expressed either as a function of pA,. 7*;
or pB by means of the transformation ' N LT

P 3t opa.

— If r = l .the two preceding equatilons lead to the following
simple equation- S S Rt

(arﬁ—rﬂﬁzwlmpu—n]1~,U—Q(u-]/' 1
{2 (1= p) (1L} -1-2uB{1 = p} (14 p2 (1~ ) (1--2))

W) (-0} 2YFg N (L
4.2.2.1. " Algebraic Solution. The following equation is i
obtained for (63) by ordering it w1th respect to decreasing powers t“;ﬁﬁ,b

of p
A o
b Pl (- (-8 18 pli—a)) (Fm2) - o
-x 2p apr(i—)? (i-p)* (F-4) .
P'fU—W)U~ﬁH('-ﬂDAU—MlP(F-ﬂ]
(171} {1--B)-- Rk (1~-a) (1—p)—4[r 1—
Spi e T s e [“,(A ")
1202 17(1--0) (1) (36{F = 2] (i1 d=pi-2 . I
. Ara? “__n) --5{ 1'“)])
e (L) u)m—(t—:m--.m (T
' (r l“) -} (1-';(1 ) (1 ‘“)(l"v) AR STV
I (e R R T )
2pa ([~ (150) (1--8)) (6T —2rad(1-p )—°°"u—an
: —2ul(l—r) (1—~7)
A““MU~U~HU—” fﬂ—dm'

1

The critical value of the evolution rate is given by the root .
of this equation and lies between ,Zero and one. In order for such.
a root to exist, the various parameters must satisfy a relationship
which constitutes the parametric condition for critical transitiong
One finds that r must. satisfy.‘? L ’ -

/AN
R T
n
e

N < 'fff;{(éj);ﬂ
with:
rues [20(t = ) 204 BTF = 2o pliim ] = .
" i Pl 23460 = A B 68)."
K saa(l~r3)h(l‘~2) 1-7)}"]/(2“(1 - mta(I’—-z) - ‘1) R ,(, )
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©If.a = 0:

B T .
NS FThE

If 8

il
O

R T

W)k )2

,_”t‘.

In the case where thest01chiometr1cratio is larger than one, onerjrf
finds that r must satisfy the relationship R :

.x-(",‘“:. o

i<rgh oy
with:
. ‘,;.n [q'“__ ;(I-—-a) - a(j _2)(0(5 xR “(‘“‘r’”
b { 20+~ 25(1—"0) - o (I -—ﬂ["@-t—a(l-,,m: R
"+S”““‘ﬂf(‘-2)'2uﬂﬂha U R ¢ -3
If a = 0; (T—HB+2ﬁj (73)

In general terms, critical tranSition is possible 1f the double _
parametric condition for critical transition is satisfied that is
if: L

(4)

It is always satisfied for astoichiometric;system.

The critical value of the evolution rate, which in the general
.case consists of a square root between zero and one of the. 6 th. degree
equation can be determined by . means of a computer in practice.

i

4.2.2.2. "Graphical'Solution"'Principal'Cases. The construc—

tion of a nomogram for the general case of a 6B degree equation_fd”
which depends on 4 parameters, 0, B, F and r is illusory. However,
except for the case r = 1, it can be simplified significantly for- ;’
'~ the case where a or 8 have,values,zero or one. The’ graphical study
A _;':,
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‘Figure 15. True Heterogramlc systemst'"i
- Schematic' representation of
flve pr1n01pal cases

:: 1is then simplified. Wefeanvehumefate the foilowingqcaseéurj-ﬁ*V”

u -+ Jw—1~s principal cases,

. where the case (o éiQ;'B”= O) has been eliminated which corresponds,
to linear systems. For reasons: of symmetry A<’B i simple cases
can be distinguished in addition to the general case (Figure 15)
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* FOURTH PART
EXPERIMENTAL VERIFICATIONS

The experimental values of the gelification points cited in
the literature primarily deal with systems which have a simple or

- relatively simple initial compOSition with respect to the monomers._*'>”"'
of the various categories. Also we: have been led, to study pseudo—heterogpnuc

- |base systems, for example for the undecane hydroxy - ll system [112] tf?f

r—

~or true heterogamic systems which have many more possible combinationsq

We will give several results for the latter after reviewing two
simple cases. ' '

1. Case No. 4. This corresponds to systems which include
multifunctional‘units A and bifunctional units B. For smﬁchﬂmetnn33~
systems, the critical transition equation is reduced to: ‘

PTEYL sy
The comparison of . theoretical and experimental values of the critical q%
evolution rate 1s shown in Table IV. Outside of modifications _ -.'
which are always possible through secondary reactions or .by. prefer—y
entlal removal of one of" the constﬁnwnts, it seems that the observed
deviations from the theoretical model must be. attributed to -the [=“
nonequiprobable spatial behavior. Th:Ls is due to the primary structure
of the reacting agents (flexibility in the spatial structure) and
also due to an evolution regime which 'is more or 1ess removed from

o

the quasi-stationary regime [113]

IO

2. Case No. 3. It corresponds to systems made up of bifunction;
al units which belong to. two species A and B and multifunctional .
units which belong to a single species, for example,,B;f,ﬂﬁlfﬁf‘”'

6L



. function of ‘the’ stoichiometric ' ratio

K TABLE v

TRUL‘ HETEROGAMIC SYSTEMS (CASE NUMBER 4)
CRITICAL RATES OF EVOLUTION COMPARED -

Stoichiometric systems = -~ iof pth: o

, lecerol (F 3) and: R _
phthallc anhydrlde or ac1dl'gj;7§, L .. 0-:0.800.

succinic anhydrlde or ac1dtf’»» . 0.800 ...
acidic acid o S , . ..0.800 .-
sebacic acid R TR '1-;3ﬁ1"‘,v - - 0,800 .

. 5 I

Penta—erythritol(?.='4) and:" v

-adipic acid - .| . - 1 0.666 -

- The equations for critioal transition are as follows asi: :

P[1~p’(1 = ﬁ)] 2
(A }'.‘.,f; 2.

r<1(p-—p) o .
__ = (1*(’)1[1-1'-(1—(")1 » '9-';
2'“*1'H1~1'-(1 f’)]'&‘(l—r)(l—-rp'(l—p)]

: ir> 1 (0 == pa) :
ISR L o i e ) | LR

' Bl T *’9‘

| ,'Critical-transition parameter condition:
B R (et R

L 2 ‘

< S i et 8D



'-_weighings which’ corresponds to ‘the succes31ve introduction of -

This system was studied eSpecially by Flory [8]. The comparison of kb;ff~
‘theoretical and experimental values is shown in Table V. It is- if;
" shown that when the value of r is ‘located slightly outside of the-ff}:‘_y _
theoretical limit ~gelifilcation occurs nevertheless. It seems thatiiffzui‘
this is . a general phaxmenmr [11u] and leads to nonequiprobable e
behavior which becomes more - sensitive,the farther the. system 1s

removed from . stoichiometry .

3. Case No. 1 (general case). It~corresponds'tofsystems Whidhffif[,j

contain units from species A and. from species B in arbitrary pro-iﬁﬁﬂf»”

portions and no matter. tﬂmir ﬂﬂkmionabty 1s. , " The systems
which we have studied consist of” points A belonging to adipic and
tricarbolic ac1ds and" p01nts B which belong to diethylene glycol :

and to: pentaerythritol

The products were purified by several distillations and re?ﬁfj“”
crystallizations. Polycondensation was carried out at 15M°'C » i
(jacket controlled by " anysol vapor with boiling)  ° .and 1n a pure} '
‘nitrogen atmosphere. - The nitrogen stream, brought in by a thin tube,
extended to the center of reaction It makes it possible to agitate;
 the medium and decelerate the appearance of gelification by stopping
the rising of nitrogen bubbles.v The samples taken are dissolved ‘ |
in a acetophenone; over 2 to 3 hours. The evolution rate of poly—;fﬂ¢f“m
condensation is measured by conductlimetric dosage of free acid '

functions using an alcoholic potassium solution.

The values of the evolution rates retained as critical values
are limiting values within two limits' a smaller upper limit
corresponds to samples which have ‘the smallest insoluble fraction '
and a larger lower limit which corresponds to the maximum value of :
the evolution rate of the samples which are completely soluble.”;“"”“
Taking the experimental errors of dosage 1nto account ‘the Values R
are only glven to + 0.005. ,

i

The composition‘of the systems 1s determined by severalh

.axmtimmntS_ in the polycondensation tube.- This makes it possible
‘t.0 calculate theifour parameters o, B8, r, F of the general equation.g

"
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| " “TABLE V SRS
'TRUE HETEROGAMIC SYSTEMS (CASE NO. 3)." CRITICAL .
RATES OF EVOLUTION COMPARED - :

-  G¢lifi§ati6h Points

Experimenfai B o . Théoreti_cal o

Tricarbolic acid (F = 3)
Glycol diethylene and: .. - o - e

adipic acid ..+ 1,000 - 0.293 0.911 0.904 .. 0.007"-
succinic acid - 1,000.° 0.194- 0.939 0.929 - ...70.010 % ..

succinic acid . 1.002 - 0.404 - 0.894 0.883 . - -0.011 " " -

adipic acid = . 0.800 ' 0.375° 0.9907 non gel. -

: : o o . (r < 0.842) .- .

adipic acid | B 0.800°, 0.250 - non gel non gel .

(r<0.888) . ¢

TABLE VI

TRUE HETEROGAMIC SYSTEMS (CASE NO. 1 OR GENERAL CASE). CRITICAL .
RATES OF EVOLUTION COMPARED S

AR L t=-T N B S T P N ST
R B X 7 S 0509 | 0605 | 3000 0,745 079 | 0001
2 0985 0,200 0,610 | L — 0,500 0,808 © 0,008
3 0979 - 0,599 orw0 | — 0,815 0,807 0,003
4 Co0s2 0,403 | 0,590 | e Io,7so_ T oam 0,007
5 095 | 0509 | 0415 | - 0755 | 0750 0,005 -
¢ 1415 | 028 | 0204 = 0510 | oS | 000
7 0059 . | 0405 | 0400 | . — 0,800 0,797 0,003 -
i‘ 8 0,951 0,600 0752 | 3,330 0663 | 0636 0,00
9 T 0,969 pro6es po0aso | 3228 | 70,690 | 0,686 0,004 -
: TR R R
} i | Reproduced from %} . : Lo
i i best availa-blve copy. TR
g
¥
'I
z
x e
el



The comparison of the experimental values and the theoretical
values calculated from Equation (63) and its transformation (6“) (*);
is given in Table VI rounded to- the third decimal

The agreement of the results 1s on the order (l part per lOO)
or very close (< 2 per 100) of the experimental error which. is h
- estimated. For systems close to st01dxumﬁtry studied here, 1t is
not possible to detect a noticeable deviation in behavior from the B
" theoretical model. ' ' L
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- FIFTH-PART
N ‘j:“‘

:

(f;APPLICATIONS‘OFNTHE THEORY‘n

In addition to the important concepts of ecritical transition
and the region of ex1stence of this transition which can be de- o
termined, the present theory can interpret certain phenomena ' CerQi:fﬁg
tain techniques can be developed as well, It is also possible to- 1
determine certaln average values, the knowledge of which may be - 11."?
desirable in measurements and which can be verified experimentally.;;
~ Above this it 1s possible to generalize the theory to the case i
where the systems comprise monofunctional monomer units_or~monomers”
_'1 which have points: Wthh are. not’ equally reactive. jThisfcanwbejdonef
by starting with the initial scheme IR e

The complete development of these different questions would
be outside of the. framework of the xeport Mb snau_ o \_ﬂ_ﬁn»mwy

limit_ourselves to certain‘brief indications.
1. Reticulation, Vulcanization.

Reticulation and vulcanization must be considered less as

: phenomena than as’ particular techniques associated with the general
phenomenon of gelification. In effect, they consist‘in an evolutionx
of the structure of a macromolecular multifunctional“cmmmund\Wﬁch:”f
has a planar graph towards the structure which has a nonplanar graph
beginning with a state which 1s different from state I of the ‘
ensemble of the disjoint monomers . :

The description of the reticulation or vulcanization processes
thus leads to a description of the type described above. The origin o
of evolution is taken as the state corresponding to that of the ;Tffﬁ?lf‘”
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- for example, in the case of unsaturated polyesters,: the different
-~ type of bonds are established simultaneously, the complete descrip—

‘partial graph G = (M R ). This 1is state I of a graph whose disQﬁh;
joint "apexes" are made up by the ensemble of the components of |
G = (M, R ). The functionality of these apexes becomes higher the
larger p becomes Frequently in practice, the state of the initialg
bsystem is modified’ beginning with the origin of the process by the‘”
addition of a reticulating agent which, in general, consists of bi-w
functional monomers.. The reactive points of the reticulating agent
can belong to any of the spec1es presented in connection w1th the '
.initial polymer. In particular, it can belong to a species which
" has remained latent during the development of the polymer and. whlch
can react under the phySical and chemical conditions imposed ffIf,;

'types of the process results in the superp051tion of the evolution
© processes for the two systems (homogamic and heterogamic)

'In general vulcanization must be considered as a retynﬂatmm
;linnted to its origin which allows a certain superp051tion CrTyoT

T

" of characteristics, especially mechanical ones which belong to

' ~each of the. lmear and cyclical structures

; Depending on the type of bonds coming into play, the reticula-
: tion and vulcanization can be quantitatively interpreted by using '
- one ‘of the models proposed previously [115] ‘ :

2. Average Molecular Quantities.
: ; S "nu
The numerical values of average molecular quantities axaob—~
tained directly from reduced state equations. Constraints which -
are inherent to:the real systems ‘under consideration must be taken‘&
into account. The evaluation of the sol and gel fractions as well
as the molecular quantities assume certain theoretical or experimen—
- tal hypotheses regarding the connectivity of the gel fraction.» They
“may also involve the value of the cyclomatic member of each of these
.Mfractions." v ' ' ' L
y _j,,_

On the other hand the statistical description adapted here
makes 1t possible to obtain one additional piece of information'
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- ramified molecules and linear molecules. ~In effect, “a ramified

'v.anti-order one.j In particular, this occurs because of this new

this is the distribution of molecules of the soluble fraction into

component of G corresponds to a- ramified component of G (see Second
‘Part,S).' But (1 + j - 1) linear floating chains in G correspond to
a cross—linkgoficlass Bij.and G ' S

Finally, 1f the most likely form of distribution is’ taken int01:
account, 1t will be possible to calculate the different average”“ f
molecular quantities which are used in experiments in general (averagef

with respect to. weight, average with respect to. z, etc )
3. Systems Consisting of‘Monofunctional Units.

The statistical description of such systems immediately results
‘from the description given previously, if it is noted that one can

‘ass1milate the collection of monofunctional units from an arbitrary
number F' into a fictitious node having functionality F"whose‘if»“
,‘decompos1tion into its parts leads .to as many corners as are A
4definitely pending. The corresponding supporting graph w1ll hav
two new types of branches in addition to the classical types and
independent of their connected nature"

L branches which have two fictitious nodal extremities (floatin'
branches) which will make. up linear floating chains ‘with nonreactive
vextremities of the real graph at saturation, '

.—— branches which have a real nodal extremity and a fictitious
nodal extremity (pending branches) ‘which make up pending branches 5
with nonreactive extremities of. the real graph at saturation. j,j-h

The filctitious functionalitth' cannot intervene in. the esti-
lvmation of the average “nodal functionality F of the real graph ‘On
the other hand .a pair of pending branches, for example .of order

zero, must be assimilated into a classic branch of order zero and

v

“‘term which will be modified due’ to the structural condition of
‘eritical transition. \u'; f7” ;wg* :

.



4, Systems Which Include'Points'With Different Reactivity, :,*G‘“‘“

If, for certain'appropriately chosen chemical systems it can ,5Q;
~ be assumed that for a sufficilent degree of approximation bonds | v:.,

are established in the course of time and in space in an equiprobable

manner, then, in general, the bonds will be created under the_ - ”f
influence of various factors. This will depend on energy, steric REREa
_ properties, etc. These various constraints make it possible to ,}Hu:_fﬁ

classify the bonds according to reactivity of the points between ’
- which they are established and in relationship to each other. Theff
reactivity, or preferential capability of establishing a class of
bonds, could, therefore, be expressed in terms of probabilities, '

Let us consider a heterogamic system whose points B correspond
for example, to various species Bi which have different reactivities
-according to some proportion Xi

If P; is the proportion of points of species Bi which have:

reacted at a given moment, it is. ‘possible to define a relative 7‘,
0 which have
the smallest reactivity and with respect to points of species B

,coefficient of reactivity ri of points from species B
such that: R

C PeE=p

This coefficient only-haS”abmeaning in_an evolution regiont

which corresponds to a proportion of points B, involved in the re-?

i
" action which is less than one. '

The probability that.a permissible bond will be established

between a point.A and-a point Bi will be:

P\n._zrp‘ “f"’Z” - o . R L

where the index i depends ‘on the distribution of the various species £
among the. corners.- Thus,'it is possible to express the various ’
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relationships describing the system as a function of po,the rate:f;ﬁ?;fﬁtﬁ
of evolution taken with respect to the least reactive species. It
is also a function of the known proportions X.i and the coefficients
r which are known or assumed known.

5. Degradation;

i

As we have already indicated degradation is the process which
is inverse to the process of synthesis. The statistical descr1p-7:;h"‘f'f
‘tion of a macromolecular multifunctional system during degradation ;‘Eﬁégf*
‘follows immediately from the preceding considerations by replacingy
‘the generalized. evolution rate p by its complementary term 4, which
is the generalized rate of degradation ‘

In the case where the initial state of the system is such that o
the corresponding graph 1s not planar, it 1is possible to predict a f.-ﬁfﬂ*
point of degelification. = B L

If the rupture'of the bonds does‘not take place a’priori in“an‘*i
equiprobable way y the preceding remarks would have to be taken into
account.

It 1s possible to give a statistical description using the =
: presented theory of the degradation of systems which are’ not macro—g":?yn
‘molecular systems in the proper sense. Thus, the degrading evolutionillh'k
of a random graph whose linear components have tetrafunctional and

mono functional corners represents a model of thermal cracking,which
possibly can be hydrovenating,of "heavy" hydrocarbons for which it~

is particularly simple to give a statistical description. _;:;p '

R
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" . homogamic systems for which the chemical bonds are made between

- CONCLUSION

The experimental data surrounding the phenomenon of gelification
lead to research regarding the random evolutive structure of- the
molecular network which develops in the course of the chemical '
reaction based on the system of: molecules.

We have examined the behavior of macromolecular multifunctional
systems from the structural and stochastic point of view. 'The '. '”
structural or topological aspect encompasses the totality. of possibleﬁégf;

configurations of structure in the sense of Konig in a straight | '
forward manner. The stochastic aspect describes the chemical re—f"‘
action at each moment of the evolution in the form of a random o ;
distribution of bonds which are chemically possible between reactive'
'functions carried by the molecules. This. point of view - ‘leads us to
distinguish two particular classes of systems which obv1ously exist;

arbitrary pairs of points and heterogamic systems for which, on the_f
other hand, the bonds are- formed in a specific manner.

The elementary given data of the theory of graphs make it _
~possible to give an axiomatic definition for the important concepts |
| 1nvolv1ng intermolecular and intramolecular bonds. This 1s also

true for the gelified and nongelified state We were able toi g
establish that the passing from one state to another must necessarily;ﬁ“'”

take place during the evolution - Certain characteristic quantities?f
- of the'system graph which are functions of its structural parameters”*“

‘and its evolution rate, satisfy a particular relationship which- 1s ‘f

~called the structural condition for critical transition ~ The studyﬁ
of this relationship shows that it cannot always be satisfied "_g
particularly for heterogamic systems. Consequently, when bonds arej
formed in a specific manner, gelification cannot be produced when ”
the ratlo of the number of complementary points present - satisfies y
two inequalities, which are called parametric condition of criticalﬂ

A
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transition. The 1atter takes into account the average functionality:
and the proportion of each species of points which belong to the ERAS
nodes of the net. ' L o L

When this condition is satisfied in the case of heterogamic f,'
systems which are quasi stoichiometric we were able to experimentally
, verify the fact . that the gelification ‘points can be theoretically '
predicted with an accuracy of the order 1l part per 100 for various :ﬁigi;;f

values of the structural parameters.

Among the various application possibilities and generalizations
of the theory, we should note the following two immediately the;}‘
~inclusion of reticulation and vulcanization in a specilal case of the
~gelification phenomenon and the calculation of various average- "
molecular quantities (in number,‘in weight, in z, etc ) should be
mentioned. This is true, not only'for the insoluble fraction when
it exists but also true for the linear part and for the ramified
part of the soluble fraction. g o

" The generalization'of'the theory to systems which comprise'i'v
monofunctional units is possible due to simple assimilation.' It. is
implicitly contained in the statistical method of description of KA
the net and consists of identifying the monofunctional entities with
fictitious nodal extremities.‘ ' ’ e

Elsewhere, we were able to show that the possible nonequireac— -
tivity of chemical functions can be expressed 1in terms of probability.t”ﬁ’

Finally, since it was independent of the direction of evolution
selected, the present stochastic description also constitutes a =

theory of degradation of.macromolecular multifunctional compoundsji”:

The present theory, as well as previous ones, could be generalizedrk“ﬂ

" to chemical compounds'having variouS‘origins. It was established
" for the study ofimacromolecular organic'compounds. It is sufficientV
to consider the fact. that the nature of the bond is, for example,- '
electrovalent, or‘of the secondary:type such as ‘a hydrogen bond’wa"

oy
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of the Van der Waals interaction type. It would also be possible
to consider evolutionary systems from the same theoretical point of v
view which would lead to. synthetic or natural inorganic gels, organic
gels having an animal or vegetable origin or, finally, certain- __’
'tranSitory relationships with living matter such as the antigene—}ﬁ
antibody system. B : SR

It may be seen paradoxical that the systematic study of the ' _
pgelification region does not seem to have been the- object of a large ‘
‘number of papers in macromolecular chemistry [113] [114]. It is a ’h
discipline 1n which the gelification region (precipitation) is _ -
constantly being studied. This is also due to the methoo of ex-T
perimentation. This is the case: in immunology where one of the-f#fm
major problems is the study of the precipitation region of the o
antigen- antibody complex - This region iIs located between a zone::l'
of excess antigenes and a zone ‘of .excess antibodies or inhibition ;fl
zones. Even though the problem is not simple, the important results 2
_obtained by the Pasteur School regarding the multispec1fic nature ofﬁﬂ
multifunctional antigenes and the monospecifity of various types of
bifunctional antibodies [116] will lead to an interpretation of the .
behavior of the antigen antibody system according to a true hetero—'
gamic system comprising« several types of bonds (speCifity) _
Consideration of cyclic structures ‘willl make it possible to. place~
it within the framework of the net theory oi’Pauling [117] o

As can be seen, the theory and its applicatiOnﬂpossibilitieSV“"j2
shown here is located halfway. between the activities of chemists,
physical chemists, biologists and mathematicians. In order to
develop and describe it an involved terminology had to be used whichj
" can satisfy no one. We do not mean to say that 1t is a definite -f
theory, just like any other theory Primarily, we wanted" to show o
that the theory of- graphs could contribute to the knowledge of the
random structure of macromolecular compounds We wish to suggest
to others a particularly important appllcation of combinatory
topology We wanted to expose in a general way the theory of graphw
in its topologilcal relationship with three-dimensional space (theory‘f
of nodes). Unfortunately, it is not well known by nonspecialists.;
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'of nodes). Unfortunately, it is not well known by nonspecialists.,fﬁﬁm
We hope we have reached our goal ' ‘

"In our efforts to understand reality, we are similar to a“ *

-person trying to understand the mechanism of a closed watch. ‘He~x,.
sees the dial and the moving hands. He hears the tick—tock but. he .
has no way to open the case. If: he is ingenious he can think of. | :
'a mechanism which can explain all of the observed facts. However,f4f5m“
it is possible for him to ever be certain that the idea he has 1s S

- the only one which can explain the facts he has observed".

ey
. -

, . A. Enstein and L. Infeld x;f"J' |
(The Evolution of Ideas in Physics)ﬂfﬂ~f
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